• Title/Summary/Keyword: distribution of primes

Search Result 3, Processing Time 0.016 seconds

ON THE PRIMES WITH $P_{n+1}-P_n = 8$ AND THE SUM OF THEIR RECIPROCALS

  • Lee Heon-Soo;Park Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.441-452
    • /
    • 2006
  • We introduce the counting function ${\pi}^*_{2.8}(x)$ of the primes with difference 8 between consecutive primes ($p_n,\;p_{n+l}=p_n+8$) can be approximated by logarithm integral $Li^*_{2.8}$. We calculate the values of ${\pi}^*_{2.8}(x)$ and the sum $C_{2,8}(x)$ of reciprocals of primes with difference 8 between consecutive primes $p_n,\;p_{n+l}=p_n+8$ where x is counted up to $7{\times}10^{10}$. From the results of these calculations. we obtain ${\pi}^*_{2.8}(7{\times}10^{10}$)= 133295081 and $C_{2.8}(7{\times}10^{10}) = 0.3374{\pm}2.6{\times}10^{-4}$.

A study on the approximation function for pairs of primes with difference 10 between consecutive primes (연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구)

  • Lee, Heon-Soo
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.49-57
    • /
    • 2020
  • In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.

Design and Analysis of Efficient Parallel Hardware Prime Generators

  • Kim, Dong Kyue;Choi, Piljoo;Lee, Mun-Kyu;Park, Heejin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.564-581
    • /
    • 2016
  • We present an efficient hardware prime generator that generates a prime p by combining trial division and Fermat test in parallel. Since the execution time of this parallel combination is greatly influenced by the number k of the smallest odd primes used in the trial division, it is important to determine the optimal k to create the fastest parallel combination. We present probabilistic analysis to determine the optimal k and to estimate the expected running time for the parallel combination. Our analysis is conducted in two stages. First, we roughly narrow the range of optimal k by using the expected values for the random variables used in the analysis. Second, we precisely determine the optimal k by using the exact probability distribution of the random variables. Our experiments show that the optimal k and the expected running time determined by our analysis are precise and accurate. Furthermore, we generalize our analysis and propose a guideline for a designer of a hardware prime generator to determine the optimal k by simply calculating the ratio of M to D, where M and D are the measured running times of a modular multiplication and an integer division, respectively.