• Title/Summary/Keyword: distribution matrix

Search Result 1,212, Processing Time 0.029 seconds

Risk assessment for inland flooding in a small urban catchment : Focusing on the temporal distribution of rainfall and dual drainage model (도시 소유역 내 내수침수 위험도 평가 : 강우 시간분포 및 이중배수체계 모형을 중심으로)

  • Lee, Jaehyun;Park, Kihong;Jun, Changhyun;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.389-403
    • /
    • 2021
  • In this study, dual drainage system based runoff model was established for W-drainage area in G-si, and considering the various rainfall characteristics determined using Huff and Mononobe methods, the degree of flooding in the target area was analyzed and the risk was compared and analyzed through the risk matrix method. As a result, the Monobe method compared to the Huff method was analyzed to be suitable analysis for flooding of recent heavy rain, and the validity of the dynamic risk assessment considering the weight of the occurrence probability as the return period was verified through the risk matrix-based analysis. However, since the definition and estimating criteria of the flood risk matrix proposed in this study are based on the return period for extreme rainfall and the depth of flooding according to the results of applying the dual drainage model, there is a limitation in that it is difficult to consider the main factors which are direct impact on inland flooding such as city maintenance and life protection functions. In the future, if various factors affecting inland flood damage are reflected in addition to the amount of flood damage, the flood risk matrix concept proposed in this study can be used as basic information for preparation and prevention of inland flooding, as well as it is judged that it can be considered as a major evaluation item in the selection of the priority management area for sewage maintenance for countermeasures against inland flooding.

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang;Zhang, Yang
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.

Composite Structures of $SiC_p$/6063 Aluminum Alloy by Rheo-Compocasting. (Rheo-Compocasting에 의한 $SiC_p$/6063 Al합금의 복합조직)

  • Choe, Jeong-Cheol
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 1990
  • Aluminum alloy matrix composites reinforced by SiC particles were prepared by rheocompocasting, a process which consists of the incoporation and distribution of reinforcement by stirring within a semi-solid alloy. When the volume fraction of SiCp and stirring speed were fixed, the dispersion of SiCp in Al-matrix alloy depended on stirring time and solid volume fraction in slurry. The results were as follows : 1) As a dispersed SiCp during stirring at $647^{\circ}C$ in 6063-Al alloy, SiC was better dispersed than that other temperature, where solid volume fraction was 43% in slurry. 2) When increased solid fraction in slurry, rate of dispersing SiC increased during stirring and porosities decreased in matrix alloy after casting. 3) Inspite of stirring with 800rpm, since solid particles of matrix alloy in slurry joined each other and occured joining growth, so that SiC was not dispersed into solid particle.

  • PDF

Ultrasonic image diagnosis using pattern recognition (패턴인식을 이용한 초음파 화상의 진단)

  • Choi, K.C.;Kim, S.I.;Lee, D.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.57-60
    • /
    • 1991
  • A new approach to texture classification for ultrasound liver diagnosis using run difference matrix was developed. The run difference matrix consists of the gray level difference along with distance. From this run difference matrix, we defined several parameters such as LDE, LDEL, NUF, SMO, SMG, SHP etc. and three vectors namely DOD, DGD and DAD. Each parameter value calculated in fatty cirrhotic, chronic hepatitic and normal liver mage was plotted in two dimensional plane. We compared our results with run length method. There are several advantages of run difference matrix method over the run lengths. 1) It is more sensitive to small difference of gray level distribution. 2) The parameters provide more statistically significant value. Images were classified with the extracted parameters to each diseases using neural networks. In preliminary clinical exprements, this approach showed satisfying results.

  • PDF

Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites (금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I))

  • 강충길;김남환;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

Interface Matrix Method in AFEN Framework

  • Leonid Pogosbekyan;Cho, Jin-Young;Kim, Young-Jin;Noh, Jae-Man;Joo, Hyung-Kook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.19-24
    • /
    • 1997
  • In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN fomular. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006%Δk of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method.

  • PDF

Investigation of Microstructure Inhomogeneity in SiCp-reinforced Aluminum Matrix Composites

  • Gacsi, Zoltan;Gur, C.Hakan;Makszimus, Andrea;Pieczonka, Tadeusz
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1303-1304
    • /
    • 2006
  • The type, volume fraction, size, shape and arrangement of embedded particles influence the mechanical properties of the particle reinforced metal matrix composites. This presents the investigation of the SiC particle and porosity distributions in various aluminum matrix composites produced by cold- and hot-pressing. The microstructures were characterized by optical microscopy and stereological parameters. SiC and porosity volume fractions, and the anisotropy distribution function were measured to establish the influence of the consolidation method.

  • PDF

Characteristics of SiC Whisker-Reinforced LAS Matrix Composites Fabricated by the Mixed Colloidal Route and the Sol-Gel Process (콜로이드 혼합법 및 Sol-Gel 법에 의해 제조한 SiC 휘스커 강화 LAS 기지 복합체의 특성)

  • 김광수;장현명;정창주;백용기
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.1012-1018
    • /
    • 1991
  • SiC whisker-reinforced LAS matrix composites were developed by a mixed colloidal processing route. An optimization of processing conditions was made using the zeta potential data of silica, boehmite, and SiC whisker dispersions. Similarly, the SiC whisker-reinforced composites were also fabricated by the conventional sol-gel process using the hydrolysis-condensation reaction of relevant metal alkoxides. The composites fabricated by the mixed colloidal processing route were characterized by a uniform spatial distribution of SiC whisker throughout the matrix. The fracture toughness increased from 1.3 MPa.m1/2 for the LAS specimen to 5.0 Mpa.m1/2 for the hot-pressed composite (95$0^{\circ}C$ and 20 MPa for 20 min) containing 20 wt% SiC whisker. The increase in fracture toughness appears to result mainly from the crack deflection and the crack bridging by whiskers with some additional toughenings from the whisker pullout and the matrix prestressing mechanisms.

  • PDF

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution

  • Seo, Byoung-Jun;Kwon, Oh-Hyoung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.8-12
    • /
    • 1999
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF

Fabrication of Carbon Nanotube Reinforced Alumina Matrix Nanocomosite by Sol-gel Process

  • Mo Chan B.;Cha Seung I.;Kim Kyung T.;Lee Kyung H.;Hong Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.27-30
    • /
    • 2004
  • Carbon nanotube reinforced alumina matrix nanocomposite was fabricated by sol-gel process and followed by spark plasma sintering process. Homogeneous distribution of carbon nanotubes within alumina matrix can be obtained by mixing the carbon nanotubes with alumina sol and followed by condensation into gel. The mixed gel, consisting of alumina and carbon nanotubes, was dried and calcinated into carbon nanotube/alumina composite powders. The composite powders were spark plasma sintered into carbon nanotube reinforced alumina matrix nanocomposite. The hardness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to an enhanced load sharing of homogeneously distributed carbon nanotubes. At the same time, the fracture toughness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to a bridging effect of carbon nanotubes during crack propagation.

  • PDF