• Title/Summary/Keyword: distribution coefficient($K_D$)

Search Result 230, Processing Time 0.025 seconds

Effect of liquid viscosity on internal flow and spray characteristics of Y-jet atomizers (액체 점도에 따른 Y-jet 노즐 내부 유동 및 분무 특성의 변화)

  • Song, Si-Hong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4053-4061
    • /
    • 1996
  • Internal flow characteristics within Y-jet atomizers and the local drop size distribution and cross-sectional averaged drop size at the outside were investigated with the liquid and air injection pressures, mixing port length of atomizers, and the liquid properties taken as parameters. To examine the effect of the liquid viscosity, glycerin-water mixtures were used in this study. The liquid viscosity plays only a minor role in determining the internal flow pattern and the spatial distribution shape of drops, but the drop sizes themselves generally increase with increasing of the liquid viscosity. An empirical correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results; the liquid discharge coefficient strongly depends on the liquid flow area at the mixing point which is proportional to the local volumetric quality(.betha.$_{Y}$), and the volumetric quality was included in the correlation. Regardless of the value of the liquid viscosity, the compressible flow through the gas port was well represented by the polytropic expansion process(k=1.2), and the mixing point pressure could be simply correlated to the aspect ratio( $l_{m}$/ $d_{m}$) of the mixing port and the air/liquid mass flow rate ratio( $W_{g}$/ $W_{f}$) as reported in the previous study.udy.udy.y.

Soil-Water Partition Coefficients for Cadmium in Some Korean Soils (우리나라 일부 토양에 대한 카드뮴의 토양-물 분배계수)

  • Ok, Yong-Sik;Lee, Ok-Min;Jung, Jin-ho;Lim, Soo-kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.200-209
    • /
    • 2003
  • Distribution coefficient ($K_d$) is an universal parameter estimating cadmium partition for a soil-water-crop system in agricultural lands. This study was performed to find some factors affecting soil-water partition coefficients for cadmium in some Korean soils. The distribution coefficients ($K_d$) of cadmium for the 15 series of agricultural soils were measured at quasi-steady state in the pH ranges from 2 to 11. The adsorption data of the selected soils showed a linear relationship between log $K_d$ and pH, which was well agreed with theoretically expected results ; $log\;K_d=0.6339pH+0.5532(r^2=0.70^{**})$. Normalization of the partition coefficients were performed in a range of pH 3.5 ~ 8.5 to minimize adverse effects of Al dissolution, cationic competition, and organic matter dissolution. The $K_d$-om, partition coefficients normalized for organic matter, improved this linearity to the pH of soils. The values of $K_d$-om measured from the field samples were significantly correlated with those of $K_d$ predicted from the sorption-edge experimental data ($r^2=0.68^{**}$).

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Evaluation of Permeability on Construction Material in CFRD Bedding Zone (CFRD Bedding Zone의 축조재료에 대한 투수성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Recently, the construction of Concrete Faced Rockfill Dam (CFRD) is increasing because rock material resources are plenty in Korea. Bedding zone in the CFRD is necessary enough bearing capacity to support the concrete face slab uniformly and enough impermeability to prevent the loss of fine soils in case of leakage from the concrete slab face. Therefore, cut-off the water leakage in bedding zone securely is the key factor influencing the safety of CFRD. Tested materials satisfied with the specification of particle size distribution at the Bedding Zone area are chosen for conducting permeability tests, which are done to evaluate the property of cut off the materials. Based on the test results, the effects of cut off the materials are investigated by considering the coefficient of permeability, the soil particle distribution, and the dry unit weight. Especially, the relationships between coefficient of permeability with effective size(D10), dry unit weight, and weight passing percent the No.4 sieve are suggested, and also the variation of coefficient of permeability with time are proposed.

Seismic Damage Analysis Of Concrete Gravity Dam Using ABAQUS (ABAQUS 소프트웨어를 이용한 콘크리트 중력댐의 지진손상해석)

  • Shin, Dong-Hoon;Nghia, Nguyen Trong;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.530-533
    • /
    • 2009
  • This study deals with 2D and 3D nonlinear seismic damage analysis of a concrete gravity dam using the finite element program ABAQUS and the concrete damaged plasticity model. 2D and 3D spillway sections of the dam are simulated. First the frequency analysis is conducted to compare the fundamental frequency and estimate the value of damping coefficient. Then the seismic analysis is conducted using the simulated ground acceleration motion. The relative displacement between the crest and bottom of the dam is obtained and compared for the maximum value and occurrence time. The results indicate that the plane-stress assumption gives similar results of maximum relative displacement and final damage distribution with 3D analysis.

  • PDF

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • Kim, Dong-Kil;Nam, Weon-Woo;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Effects of the Floor Pannel on Flows in a Vertical Laminar Flow Type Clean Room (수직 층류형 클린룸의 바닥 패널이 실내기류에 미치는 영향)

  • Kang, S.H.;Jeon, W.P.;Oh, M.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-315
    • /
    • 1990
  • Uniformity of velocity is quite important design points of a vertical laminar flow type clean room. In the present paper, flows in a room with a bottom pannel are numerically simulated by using a low-Reynolds number $k-{\epsilon}$ model, and a new flow model of the pannel are suggested. Resistance coefficient of the pannel and size of the exhaust channel show considerable effects on flow pattern and uniformity of flow on the bottom. Reflection coefficient also has important roles. A possibility to obtain the uniform and unidirectional flow is tested by adjusting the distribution of resistance coefficient of the pannel. Such a numerical simulation of the flow will be a good method to get optimun design parameters.

  • PDF

Effects of cobble shape on coefficient of drag force (항력계수에 미치는 호박돌 형상의 영향)

  • Park, Sang Deog;Yoon, Min Woo;Yoon, Young Ho
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.419-427
    • /
    • 2017
  • In mountainous rivers, the drag force acting on cobbles abundant in the riverbed surface is important in predicting behavior and response of the river. However there is little research for the drag coefficients of cobbles. This paper is to carry out the experiments for drag force of cobble and analyze the relation between the cobble shape and the drag coefficient. The effects of the shape factor on the drag coefficients $C_D$ when the long axis or the short axis of the cobbles are parallel to the direction of flow velocity were analyzed. The coefficient of drag force increased with the nominal diameter Reynolds number $R_{ep}$. The drag coefficients are greater in short axis than long axis. The coefficient of determination of the relation between $C_D$ and $R_{ep}$ is greater in long axis than short axis. This means that the drag forces acting on the irregularly-shaped cobbles depend on the axis. A change of the drag force distribution has brought about the alternative swing of cobbles. For $R_{ep}$ > 12,000, the amplitude of the swing has been increased sharply and especially was greater in short axis than long axis.

PWR Core Stability Against Xenon-Induced Spatial Power Oscillation (경수로심의 제논진동 해석)

  • Ho Ju Moon;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.51-63
    • /
    • 1982
  • Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon trausient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average turnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as turnup progresses, and unstable at the end of the cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core turnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilities to some extents, especially at the end of cycle.

  • PDF

Mobility Characteristics of Veterinary Antibiotics in Soil Column (토주실험에서 동물용 의약품의 이동 특성)

  • Hwang, Sun-Young;Han, Man-Hye;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.241-246
    • /
    • 2012
  • Veterinary antibiotics can enter the soil ecosystem and then may be transported into groundwater via leaching process. The main aim of this study is to investigate the distribution and mobility of tetracycline, amoxicillin and sulfathiazole in soil. The adsorption of veterinary antibiotics were applied to the Freundlich adsorption isotherms. Adsorption coefficient ($K_F$) was indicated oxytetracycline > amoxicillin > sulfathiazole. Oxytetracycline concentration was highly detected in soil than in leachate. It is assumed that oxytetracycline was strongly absorbed by divalent cations such as $Ca^{2+}$ in soil. However, amoxicillin and sulfathiazole were shown higher mobility due to the lower distribution coefficient.