• Title/Summary/Keyword: distributed reaction flame

Search Result 13, Processing Time 0.017 seconds

Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1))

  • 최병륜;이중성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames (에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향)

  • Jun-Soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • The risk of climate change has been long acknowledged, and ongoing efforts to overcome this issue, within the shipping sector, with the international maritime organization playing a central role. Conducting research on characteristics of soot formation is crucial to control its occurrence within the combustion process. In this study, the laser extinction method and chemical reaction numerical analysis were employed to examine the alterations in the state of chemical species associated with flame temperature, flame visual, and soot formation by mixing nitrogen, an inert gas, in the counterflow diffusion flame based on ethylene gas. The findings of the study suggest that as the mixing ratio of nitrogen increased, both the flame temperature and soot volume fraction decreased. Additionally, the area in which soot particles were distributed also decreased, and the volume fraction decrease rate declined when the mixing ratio increased by more than 30%. The mole fraction of the chemical species involved in soot growth also decreased. the chemical species associated with the HACA reaction were affected by variations in the hydrocarbon fuel ratio, and the chemical species related to the odd carbon path were confirmed to be affected by the flame temperature as well as the hydrocarbon fuel ratio.

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.