DOI QR코드

DOI QR Code

Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames

에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향

  • Jun-Soo Kim (Korea Institute of Maritime and Fisheries Technology)
  • Received : 2023.06.05
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

The risk of climate change has been long acknowledged, and ongoing efforts to overcome this issue, within the shipping sector, with the international maritime organization playing a central role. Conducting research on characteristics of soot formation is crucial to control its occurrence within the combustion process. In this study, the laser extinction method and chemical reaction numerical analysis were employed to examine the alterations in the state of chemical species associated with flame temperature, flame visual, and soot formation by mixing nitrogen, an inert gas, in the counterflow diffusion flame based on ethylene gas. The findings of the study suggest that as the mixing ratio of nitrogen increased, both the flame temperature and soot volume fraction decreased. Additionally, the area in which soot particles were distributed also decreased, and the volume fraction decrease rate declined when the mixing ratio increased by more than 30%. The mole fraction of the chemical species involved in soot growth also decreased. the chemical species associated with the HACA reaction were affected by variations in the hydrocarbon fuel ratio, and the chemical species related to the odd carbon path were confirmed to be affected by the flame temperature as well as the hydrocarbon fuel ratio.

기후 변화에 따른 위험성은 전 세계적으로 오랜 기간 강조되고 있으며, 이를 극복하기 위한 노력은 해운분야에서도 국제해사 기구를 중심으로 이어지고 있다. 연소과정에서 발생한 매연을 제어하기 위하여 매연 생성 특성에 관한 연구는 필수적이다. 본 연구에서는 에틸렌 가스를 기반으로 한 대향류 확산화염에서 불활성 기체인 질소를 혼합하여 화염온도, 화염형태, 매연 생성 관련된 화학종의 상태변화를 확인하기 위해 광소멸법과 화학반응 수치해석을 수행하였다. 연구 결과. 질소의 혼합비율이 증가함에 따라 화염온도 감소와 매연체적분율 감소로 이루어졌다. 매연 입자가 분포하는 구간도 감소하였으며, 30% 이상 혼합비율이 높아지면 체적분율 감소율이 감소하였다. 매연 성장에 관여하는 화학종들의 몰분율도 감소하였다. HACA 반응 관련 화학종은 탄화수소 연료 비율에 따라 영향을 받으나, 홀수탄소 경로 관련 화학종은 탄화수소 연료 비율뿐만 아니라 화염온도 영향을 받는 것을 확인하였다.

Keywords

References

  1. Ali, M. U., L. Siyi, B. Yousaf, Q. Abbas, R. Hameed, C. Zheng, and M. H. Wong(2021), Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review, Critical Reviews in Environmental Science and Technology, Vol. 51, No. 9, pp. 857-896. https://doi.org/10.1080/10643389.2020.1738854
  2. Barker, A., K. Knapp, A. Barker, and K. Knapp(1990), Nitrogen, Work Out Chemistry GCSE, pp. 105-112.
  3. Berrang-Ford, L., J. D. Ford, and J. Paterson(2011), Are we adapting to climate change?, Global environmental change, Vol. 21, No. 1, pp. 25-33. https://doi.org/10.1016/j.gloenvcha.2010.09.012
  4. Bilgili, L.(2021), Life cycle comparison of marine fuels for IMO 2020 Sulphur Cap, Science of the total Environment, Vol. 774, 145719.
  5. Eyring, V., I. S. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, and D. S. Stevenson(2010), Transport impacts on atmosphere and climate: Shipping, Atmospheric Environment, Vol. 44, No. 37, pp. 4735-4771.
  6. Fuse, R., H. Kobayashi, Y. Ju, K. Maruta, and T. Niioka (2002), NOx emission from high-temperature air/methane counterflow diffusion flame, International Journal of Thermal Sciences, Vol. 41, No. 7, pp. 693-698.
  7. Glassman, I.(1989), Soot formation in combustion processes, In Symposium (international) on combustion, Vol. 22, No. 1, pp. 295-311. https://doi.org/10.1016/S0082-0784(89)80036-0
  8. Hai, W., Y. Xiaoqing, V. Joshi Ameya, G. Davis Scott, and E. C. Fokion(2007), High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds.
  9. Negoescu, C. C., Y. Li, B. Al-Duri, and Y. Ding(2017), Heat transfer behaviour of supercritical nitrogen in the large specific heat region flowing in a vertical tube, Energy, Vol. 134, pp. 1096-1106. https://doi.org/10.1016/j.energy.2017.04.047
  10. Peterson, B. and A. Saxon(1996), Global increases in allergic respiratory disease: the possible role of diesel exhaust particles, Annals of Allergy, Asthma & Immunology, Vol. 77, No. 4, pp. 263-270. https://doi.org/10.1016/S1081-1206(10)63318-2
  11. Singh, P. and C. -J. Sung(2016), PAH formation in counterflow non-premixed flames of butane and butanol isomers, Combustion and Flame, Vol. 170, pp. 91-110. https://doi.org/10.1016/j.combustflame.2016.05.009
  12. Wey, C., E. A. Powell, and J. I. Jagoda(1984), The effect of temperature on the sooting behavior of laminar diffusion flames, Combustion Science and Technology, Vol. 41, No. 3-4, pp. 173-190. https://doi.org/10.1080/00102208408923828
  13. Yoon, S. S., S. M. Lee, J. Y. Hwang, and S. H. Chung(2002), Soot and PAH Formation in Counterflow Diffusion Flames of Ethylene-Propane, Transactions of the Korean Society of Mechanical Engineers B, Vol. 26, No. 6, pp. 817-822. https://doi.org/10.3795/KSME-B.2002.26.6.817