• 제목/요약/키워드: distributed parameter circuit

검색결과 34건 처리시간 0.036초

분포정수회로모델을 이용한 수직 접지전극의 접지임피던스의 분석 (Analysis for the Grounding Impedance of Vertical Grounding Electrodes using the Distributed Parameter Circuit Model)

  • 이복희;김종호;최종혁
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1103-1108
    • /
    • 2010
  • A grounding electrode has the transient grounding impedance characteristics against lightning surges. So the performance of grounding electrodes should be evaluated as a grounding impedance as well as the ground resistance. The frequency-dependent grounding impedance is varied with the shape and size of grounding electrode and is divided into both inductive and capacitive behaviors. This paper presents a theoretical analysis for the grounding impedance determined by the size of grounding electrode using the distributed parameter circuit model. EMTP and Matlab programs were used in calculating the frequency-dependent grounding impedances of vertical grounding electrodes. It was found that the frequency-dependent grounding characteristics of vertical grounding electrodes are characterized by the distributed parameters which are changed in the dimension of grounding electrodes.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

분포정수회로 해석 방법을 이용한 지중선로 고장점 추정 알고리즘 (A Novel Algorithm of Underground Cable Fault Location based on the analysis of Distributed Parameter Circuit)

  • 양하;이덕수;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.412-414
    • /
    • 2004
  • In this paper, a novel algorithm of underground cable fault location based on the analysis of distributed parameter circuit is proposed. The proposed method makes voltage and current equations about core and sheath, and then establishes a function of the fault distance according to the analysis of fault conditions. Finally gets the solution of this function through Newton-Raphson iteration method. The effectiveness of proposed algorithm has been verified by Matlab program, and the cable parameters such as impedance and admittance are from EMTP simulation.

  • PDF

임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석 (Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents)

  • 조정현;이복희
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

MTL 모델을 이용한 전차선로 모델링 (Catenary System using MTL Structure with Distributed Parameter)

  • 김주락;심건보;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1077-1078
    • /
    • 2006
  • This paper presents circuit model of catenery in electrified railway system. Most of (a.c.)electrified railway system adopted as AT fed power supply system. This system is fed with twice voltage. It is that AT system can be fed through longer distance. Conventional circuit model of catenary is used T equivalent circuit with lumped parameter. This model may include some problem when traction power supply system is analyzed. In addition, the model with distributed parameter is good for analysis of harmonic and EMI.

  • PDF

분포정수를 이용한 전차선로 회로해석 (Analysis of Catenary System with Distributed Parameter)

  • 김주락;심건보;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1171-1172
    • /
    • 2007
  • This Paper presents circuit model of catenery in electrified railway system. Most of (a.c.)electrified railway system adopted as AT fed power supply system. This system is fed with twice voltage. It is that AT system can be fed through longer distance. Conventional circuit model of catenary is used T equivalent circuit with lumped parameter. This model may include some problem when traction power supply system is analyzed. In addition, the model with distributed parameter is good for analysis of harmonic and EMI

  • PDF

매설지선의 임펄스임피던스의 해석 (Analysis for the impulsive impedance of counterpoise)

  • 조정현;김종호;백영환;김동성;이강수;김기복;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

Critical Length Estimation of Counterpoise Subjected to Lightning Stroke Currents

  • Lee, Bok-Hee;Yoo, Yang-Woo;Kim, Jong-Ho
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.106-113
    • /
    • 2011
  • The conventional grounding impedance of a counterpoise is calculated as a function of the length of the counterpoise by use of the distributed parameter circuit model with an application of the EMTP(Electromagnetic Transient Program). The adequacy of the distributed parameter circuit model is examined and verified by comparison of the simulated and the measured results. The conventional grounding impedance of the counterpoise is analyzed for the first short stroke and subsequent short stroke currents. As a result, the simulated results show that the minimum conventional grounding impedance gives at a specified length of the counterpoise. The shorter the time taken to reach the peak of injected currents, the shorter the length of the counterpoise having the minimum conventional grounding impedance. We also present the critical lengths of the counterpoise for short stroke currents as a function of soil resistivity. Based on these results, it is necessary to compute the length of the counterpoise in a specified soil resistivity which satisfies both the low conventional grounding impedance requirement whilst also providing a suitable ground resistance in order to obtain an economical design and installation of the counterpoise.

EMTP를 이용한 매설지선의 규약접지임피던스 해석 (Analysis for the conventional impedance of counterpoise using EMTP)

  • 김종호;조정현;백영환;이강수;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2009
  • When the lightning currents flow through the ground electrode, the grounding system should be evaluated by the grounding impedance rather than the ground resistance because a grounding system shows the transient impedance characteristic by the inductance of the ground electrode and the capacitance of the soil. The ratio of the peak values of electric potential and currents is the conventional impedance that shows the transient characteristic about impulse currents of the grounding system in a roundabout way. The grounding system having low conventional impedance is a fine grounding system with low electric potential when the lightning currents flow. In this paper the conventional impedance of the counterpoise is calculated by using the distributed parameter circuit model and embodied the distributed parameter circuit model by using the EMTP program The adequacy of the distributed parameter model is examined by comparing the simulated and the measured results. The conventional impedance of the counterpoise is analyzed for first short stroke and subsequent short stroke currents.

  • PDF

지중 케이블 계통의 1선지락 고장점 표정 알고리즘 (A Line to Ground Fault Location Algorithm for Underground Cable System)

  • 이덕수;양하;최면송
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.267-273
    • /
    • 2005
  • This paper proposes a line-to-ground fault location algorithm for underground cable system. A feature of the proposed method is a new algorithm based on the analytic research which has not been tried until now. The proposed method firstly makes voltage and current equations using analysis of distributed parameter circuit for each of cores and sheathes respectively, and then establishes an equation of the fault distance according to the analysis of the fault conditions. Finally the solution of this equation is calculated by Newton-Raphson iteration method. The effectiveness of this proposed algorithm has been proven through PSCAD/EMTDC(Ver. 4.1) simulations.