• Title/Summary/Keyword: distributed local search algorithm

Search Result 11, Processing Time 0.026 seconds

Comparison and Analysis of Information Exchange Distributed Algorithm Performance Based on a Circular-Based Ship Collision Avoidance Model (원형 기반 선박 충돌 피항 모델에 기반한 정보 교환 분산알고리즘 성능 비교 분석)

  • Donggyun Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.401-409
    • /
    • 2023
  • This study compared and analyzed the performance of a distributed area search algorithm and a distributed probability search algorithm based on information exchange between ships. The distributed algorithm is a method that can search for an optimal avoidance route based on information exchange between ships. In the distributed area search algorithm, only a ship with the maximum cost reduction among neighboring ships has priority, so the next expected location can be changed. The distributed stochastic search algorithm allows a non-optimal value to be searched with a certain probability so that a new value can be searched. A circular-based ship collision avoidance model was used for the ship-to-ship collision avoidance experiment. The experimental method simulated the distributed area search algorithm and the distributed stochastic search algorithm while increasing the number of ships from 2 to 50 that were the same distance from the center of the circle. The calculation time required for each algorithm, sailing distance, and number of message exchanges were compared and analyzed. As a result of the experiment, the DSSA(Distributed Stochastic Search Algorithm) recorded a 25%calculation time, 88% navigation distance, and 84% of number of message exchange rate compared to DLSA.

Two-Phase Distributed Evolutionary algorithm with Inherited Age Concept

  • Kang, Young-Hoon;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.4-101
    • /
    • 2001
  • Evolutionary algorithm has been receiving a remarkable attention due to the model-free and population-based parallel search attributes and much successful results are coming out. However, there are some problems in most of the evolutionary algorithms. The critical one is that it takes much time or large generations to search the global optimum in case of the objective function with multimodality. Another problem is that it usually cannot search all the local optima because it pays great attention to the search of the global optimum. In addition, if the objective function has several global optima, it may be very difficult to search all the global optima due to the global characteristics of the selection methods. To cope with these problems, at first we propose a preprocessing process, grid-filtering algorithm(GFA), and propose a new distributed evolutionary ...

  • PDF

Dynamic Priority Search Algorithm Of Multi-Agent (멀티에이전트의 동적우선순위 탐색 알고리즘)

  • Jin-Soo Kim
    • The Journal of Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A distributed constraint satisfaction problem (distributed CSP) is a constraint satisfaction problem(CSP) in which variables and constraints are distributed among multiple automated agents. ACSP is a problem to find a consistent assignment of values to variables. Even though the definition of a CSP is very simple, a surprisingly wide variety of AI problems can be formalized as CSPs. Similarly, various application problems in DAI (Distributed AI) that are concerned with finding a consistent combination of agent actions can be formalized as distributed CAPs. In recent years, many new backtracking algorithms for solving distributed CSPs have been proposed. But most of all, they have common drawbacks that the algorithm assumes the priority of agents is static. In this thesis, we establish a basic algorithm for solving distributed CSPs called dynamic priority search algorithm that is more efficient than common backtracking algorithms in which the priority order is static. In this algorithm, agents act asynchronously and concurrently based on their local knowledge without any global control, and have a flexible organization, in which the hierarchical order is changed dynamically, while the completeness of the algorithm is guaranteed. And we showed that the dynamic priority search algorithm can solve various problems, such as the distributed 200-queens problem, the distributed graph-coloring problem that common backtracking algorithm fails to solve within a reasonable amount of time. The experimental results on example problems show that this algorithm is by far more efficient than the backtracking algorithm, in which the priority order is static. The priority order represents a hierarchy of agent authority, i.e., the priority of decision-making. Therefore, these results imply that a flexible agent organization, in which the hierarchical order is changed dynamically, actually performs better than an organization in which the hierarchical order is static and rigid. Furthermore, we describe that the agent can be available to hold multiple variables in the searching scheme.

  • PDF

Local Map-based Exploration Strategy for Mobile Robots (지역 지도 기반의 이동 로봇 탐사 기법)

  • Ryu, Hyejeong;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.256-265
    • /
    • 2013
  • A local map-based exploration algorithm for mobile robots is presented. Segmented frontiers and their relative transformations constitute a tree structure. By the proposed efficient frontier segmentation and a local map management method, a robot can reduce the unknown area and update the local grid map which is assigned to each frontier node. Although this local map-based exploration method uses only local maps and their adjacent node information, mapping completion and efficiency can be greatly improved by merging and updating the frontier nodes. Also, we suggest appropriate graph search exploration methods for corridor and hall environments. The simulation demonstrates that the entire environment can be represented by well-distributed frontier nodes.

Distributed Autonomous Robotic System based on Artificial Immune system and Distributed Genetic Algorithm (인공 면역 시스템과 분산 유전자 알고리즘에 기반한 자율 분산 로봇 시스템)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(AIS) based on Artificial Immune System(AIS) and Distributed Genetic Algorithm(DGA). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: dispersion and aggregation. AIS decides one among above two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the DGA in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION IN DISTRIBUTED COMPUTING ENVIRONMENT (분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구)

  • Kim Y.J.;Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.19-24
    • /
    • 2006
  • A research to evaluate the efficiency of design optimization was carried out for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition in a single analysis rather than a simultaneous distributed-analyses using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoils and evaluate their efficiencies. dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in the present distributed computing system. The SAO was found fairly suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the most efficient algorithm in the present distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model deteriorate its efficiency from the practical point of view.

Improvement of evolution speed of individuals through hybrid reproduction of monogenesis and gamogenesis in genetic algorithms (유전자알고리즘에서 단성생식과 양성생식을 혼용한 번식을 통한 개체진화 속도향상)

  • Jung, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.45-51
    • /
    • 2011
  • This paper proposes a method to accelerate the evolution speed of individuals through hybrid reproduction of monogenesis and gamogenesis. Monogenesis as a reproduction method that bacteria or monad without sexual distinction divide into two individuals has an advantage for local search and gamogenesis as a reproduction method that individuals with sexual distinction mate and breed the offsprings has an advantages for keeping the diversity of individuals. These properties can be properly used for improvement of evolution speed of individuals in genetic algorithms. In this paper, we made relatively good individuals among selected parents to do monogenesis for local search and forced relatively bad individuals among selected parents to do gamogenesis for global search by increasing the diversity of chromosomes. The mutation probability for monogenesis was set to a lower value than that of original genetic algorithm for local search and the mutation probability for gamogenesis was set to a higher value than that of original genetic algorithm for global search. Experimental results with four function optimization problems showed that the performances of three functions were very good, but the performances of fourth function with distributed global optima were not good. This was because distributed global optima prevented individuals from steady evolution.

Collection Fusion Algorithm in Distributed Multimedia Databases (분산 멀티미디어 데이터베이스에 대한 수집 융합 알고리즘)

  • Kim, Deok-Hwan;Lee, Ju-Hong;Lee, Seok-Lyong;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.406-417
    • /
    • 2001
  • With the advances in multimedia databases on the World Wide Web, it becomes more important to provide users with the search capability of distributed multimedia data. While there have been many studies about the database selection and the collection fusion for text databases. The multimedia databases on the Web have autonomous and heterogeneous properties and they use mainly the content based retrieval. The collection fusion problem of multimedia databases is concerned with the merging of results retrieved by content based retrieval from heterogeneous multimedia databases on the Web. This problem is crucial for the search in distributed multimedia databases, however, it has not been studied yet. This paper provides novel algorithms for processing the collection fusion of heterogeneous multimedia databases on the Web. We propose two heuristic algorithms for estimating the number of objects to be retrieved from local databases and an algorithm using the linear regression. Extensive experiments show the effectiveness and efficiency of these algorithms. These algorithms can provide the basis for the distributed content based retrieval algorithms for multimedia databases on the Web.

  • PDF

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.