In this paper, we present the strategy of object search for distributed autonomous robotic systems (DARS). The DARS are the systems that consist of multiple autonomous robotic agents to whom required functions are distributed. For instance, the agents should recognize their surrounding at where they are located and generate some rules to act upon by themselves. In this paper, we introduce the strategy for multiple DARS robots to search a hidden object at the unknown area. First, we present an area-based action making process to determine the direction change of the robots during their maneuvers. Second, we also present Q learning adaptation to enhance the area-based action making process. Third, we introduce the coordinate system to represent a robot's current location. In the end of this paper, we show experimental results using hexagon-based Q learning to find the hidden object.
This paper aims to investigate modeling scripts based on the mode of group interaction in a computer-supported collaborative learning environment. Based on a literature review, this paper assumes that group interaction and its mode would have strong influence on the online collaborative learning process, and furthermore lead learners to create and share significant knowledge within a group. This paper deals with two different modes of group interaction- distributed and shared interaction. Distributed interaction depends on the external representation of individual knowledge, while shared interaction is concerned with sharing knowledge in group action. In order to facilitate these group interactions, this paper emphasizes the utilization of appropriate CSCL scripts, and then proposes the conceptual framework of CSCL scripts which integrate the existing scripts such as implicit, explicit, internal and external scripts. By means of the model regarding CSCL scripts based on the mode of group interaction, the implications for research on the design of CSCL scripts are explored.
군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화학습을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.
본 연구에서는 SCORM기반의 새로운 교수 학습 시스템을 연구하는 것을 목적으로 한다. 이를 위해 기존의 교수 학습 시스템의 장점과 단점들을 살펴보고 SCORM(Sharable Content Object Reference Model)에 대한 관련연구들을 통해 SCORM의 목적과 장단점등을 살펴본다. SCORM은 ADL(Advanced Distributed Learning)에서 교육용 콘텐츠의 재사용성을 높이기위해 제안한 모델이다. 또한 SCORM을 기반으로 구축된 시스템 사례들을 살펴본다. 본 연구에서는 이를 통해 SCORM을 기반으로 하면서 자기 주도적인 학습 및 코스 설계가 가능하고 수준별 개별 학습이 가능한 새로운 시스템을 제안하고자 한다. 새로운 시스템이 학습자의 학습 효과와 만족도를 높이는 것을 실험을 통해 보이고자 한다.
본 논문은 분산형 전력 시스템에서 심층강화학습 기반의 전력 생산 환경 및 수요와 공급을 예측하며 자원 할당 알고리즘을 적용해 전력거래 시스템 연구의 최적화된 결과를 보여준다. 전력 거래시스템에 있어서 기존의 중앙집중식 전력 시스템에서 분산형 전력 시스템으로의 패러다임 변화에 맞추어 전력거래에 있어서 공동의 이익을 추구하며 장기적인 거래의 효율을 증가시키는 전력 거래시스템의 구축을 목표로 한다. 심층강화학습의 현실적인 에너지 모델과 환경을 만들고 학습을 시키기 위해 날씨와 매달의 패턴을 분석하여 데이터를 생성하며 시뮬레이션을 진행하는 데 있어서 가우시안 잡음을 추가해 에너지 시장 모델을 구축하였다. 모의실험 결과 제안된 전력 거래시스템은 서로 협조적이며 공동의 이익을 추구하며 장기적으로 이익을 증가시킨 것을 확인하였다.
기존 악성코드 탐지는 다형성 또는 난독화 기법이 적용된 변종 악성코드 탐지에 취약하다. 기계학습 알고리즘은 악성코드에 내재된 패턴을 학습시켜 유사 행위 탐지가 가능해 기존 탐지 방법을 대체할 수 있다. 시간에 따라 변화하는 악성코드 패턴을 학습시키기 위해 지속적으로 데이터를 수집해야한다. 그러나 대용량 악성코드 파일의 저장 및 처리 과정은 높은 공간과 시간 복잡도가 수반된다. 이 논문에서는 공간 복잡도를 완화하고 처리 시간을 가속화하기 위해 HDFS 기반 분산 처리 시스템을 설계한다. 분산 처리 시스템을 이용해 2-gram 특징과 필터링 기준에 따른 API 특징 2개, APICFG 특징을 추출하고 앙상블 학습 모델의 일반화 성능을 비교했다. 실험 결과로 특징 추출의 시간 복잡도는 컴퓨터 한 대의 처리 시간과 비교했을 때 약 3.75배 속도가 개선되었으며, 공간 복잡도는 약 5배의 효율성을 보였다. 특징 별 분류 성능을 비교했을 때 2-gram 특징이 가장 우수했으나 훈련 데이터 차원이 높아 학습 시간이 오래 소요되었다.
The construction of the students knowledge in e-Learning systems, namely the student modeling, is a core component used to develop e-Learning systems. However, existing e-Learning systems have many problems to share the knowledge in a heterogeneous student model and a distributed knowledge base. Because the methods of the knowledge representation are different in each e-Learning systems, the accumulated knowledge cannot be used or shared without a great deal of difficulty. In order to share this knowledge, existing systems must reconstruct the knowledge bases. Consequently, we propose a new a Case Markup Language based on XML in order to overcome these problems. A distributed e-Learning systems fan have the advantage of easily sharing and managing the heterogeneous knowledge base proposed by CaseML. Moreover students can generate and share a case knowledge to use the communication protocol of agents. In this paper, we have designed and developed a CaseML by using a knowledge markup language. Furthermore, in order to construct an intelligent e-Learning systems, we have done our research based on the design and development of the intelligent agent system by using CaseML.
Recently, various artificial intelligence technologies are being applied to smart factory, finance, healthcare, and so on. When handling data requiring protection of privacy, distributed learning techniques are used. For distribution of information with privacy protection, encoding private information is required. Minimal codes has been used in such a secret-sharing scheme. In this paper, we explain the relationship between the characteristics of the minimal codes for application in distributed systems. We briefly deals with previously known construction methods, and presents extension methods for minimal codes. The new codes provide flexibility in distribution of private information. Furthermore, we discuss application scenarios for the extended codes.
멀티미디어 원격강의 컨텐츠를 학습자에게 전달하는 효율은 저작방식에 의해 달라질 수 있다. 영상녹화장치를 사용하여 동영상으로 녹화된 강의는 미디어 서버를 이용하여 스트리밍 방식으로 전송하며, 원격강의 저작도구를 사용하여 저작된 강의는 컨텐츠 파일을 학습자가 다운로드 하여 재생하게 된다 최근에는 플래시 등의 기술을 이용하여 수작업으로 저작한 컨텐츠의 서비스 방식도 늘어나고 있다. 본 논문에서는 미디어 동기화 기법으로 저작된 원격강의 컨텐츠를 재생 시간별고 블록화 하여 인터넷의 여러 서버에 분산배치하고, 이를 학습자 시스템에서 스트리밍 형태로 수집하고 재생하는 시스템을 제안하고 구현한다. 제안한 시스템은 다운로드를 기반으로 한 스트리밍 시스템으로, 일반적인 동영상 스트리밍 방식과는 달리 컨텐츠 자체의 QoS를 보장할 수 있으며, 컨텐츠의 자료를 최신의 것으로 보완하는데 필요한 노력을 줄일 수 있다. 또한, 라 컨텐츠 블록별로 별도로 저작과 관리가 이루어지는 특성으로 인하여 전자게시판과 같은 동적 웹페이지를 컨텐츠 내에 포함시키는 복합 컨텐츠를 쉽게 구성할 수 있다.
동적 시스템 환경에서 지능형 협업 자율 시스템을 위한 기계학습 기반의 다양한 방법들이 연구 및 개발되고 있다. 본 연구에서는 분산 노드 기반 컴퓨팅 방식의 자율형 다중 에이전트 경로 탐색 방법을 제안하고 있으며, 지능형 학습을 통한 시스템 최적화를 위해 강화학습 방법을 적용하여 다양한 실험을 진행하였다. 강화학습 기반의 다중 에이전트 시스템은 에이전트의 연속된 행동에 따른 누적 보상을 평가하고 이를 학습하여 정책을 개선하는 지능형 최적화 기계학습 방법이다. 본 연구에서 제안한 방법은 강화학습 기반 다중 에이전트 최적화 경로 탐색 성능을 높이기 위해 학습 초기 경로 탐색 방법을 개선한 최적화 방법을 제안하고 있다. 또한, 분산된 다중 목표를 구성하여 에이전트간 정보 공유를 이용한 학습 최적화를 시도하였으며, 비동기식 에이전트 경로 탐색 기능을 추가하여 실제 분산 환경 시스템에서 일어날 수 있는 다양한 문제점 및 한계점에 대한 솔루션을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.