현대 사회에서 스마트홈은 사람들의 일상생활의 한 부분이 되고 있다. 전통적인 스마트홈 시스템은 보안, 데이터 집중화, 위변조 같은 문제들을 내포하고 있으며, 이러한 문제들을 해결하는 기술로서 블록체인이 각광 받고 있다. 본 논문은 홈과 블록체인 네트워크 부분으로 구성된 블록체인 기반 스마트홈 시스템을 제안한다. 8개의 노드로 구성된 블록체인 네트워크는 도커 환경에서 하이퍼레저 패브릭 플랫폼에서 구현된다. 데이터 전송 보안을 위하여 ECC 암호화 기술이 사용되고, RBAC가 네트워크 회원의 인증을 관리한다. Raft 의사 결정 알고리즘은 분산처리 시스템의 모든 노드에서 데이터 일관성을 유지하고, 블록 발생 시간을 줄인다. 노드들이 스마트홈 데이터를 안전하고 효율적으로 접근하도록 스마트 컨트랙트가 쿼리와 데이터 전송을 제어한다. 실험 결과는 많은 동시 접근 하에서 안전한 평균 쿼리와 서브밋 시간이 84.5 [ms]와 93.67 [ms]로 유지되고, 모의 패킷캡쳐 공격에서 전송 데이터가 안전하다는 것을 보여준다.
이종의 분산환경에서 다양한 보안시스템에 대한 효율적인 보안 관리를 위해서 관리자는 보안 시스템들이 설치된 네트워크 환경에 대한 사전에 전문적인 보안 지식을 갖고 있어야하며, 개방형 네트워크 환경의 경우 새로운 보안시스템이 추가되면 새로운 보안 정책과 기술을 적용해야 한다. 이는 전산망 운영 기관의 보안 관리 비용을 가중시키며 체계적이고 일괄적인 보안 정책 및 기술 구현을 불가능하게 하여 오히려 보안 문제를 야기시키는 역기능을 초래할 수 있다. 그리고, 보안 제품의 개발과 공급이 다수의 공급자에 의해서 공급되므로 서로 상이한 특성을 갖는 보안 시스템들로 구성된 보안 관리 구조의 효율적인 운용과 유지에 상당한 어려움이 있다. 이에 본 논문에서는 이종의 보안시스템을 관리하는 통합보안시스템의 보안정책을 Z-Notation을 통해서 정의하고 통합관리에서 발생되는 정책 충돌 문제를 대표적인 보안시스템인 침입차단시스템(Firewall : 방화벽)을 대상으로 모델링하고 이를 해결하는 알고리즘을 제시하고자 한다.
AI 기술의 성장과 함께 지식 그래프의 크기는 지속적으로 확장되고 있다. 지식 그래프는 주로 트리플이 연결된 RDF로 표현되며, 많은 RDF 저장소들이 RDF 데이터를 압축된 형태의 ID로 변환한다. 그러나 RDF 데이터의 크기가 특정 기준 이상으로 클 경우, 테이블 탐색으로 인한 높은 처리 시간과 메모리 오버헤드가 발생한다. 본 논문에서는 해시 ID 매핑 테이블 기반 RDF 변환을 분산 병렬 프레임워크인 맵리듀스에서 처리하는 방법을 제안한다. 제안한 방법은 RDF 데이터를 정수 기반 ID로 압축 변환하면서, 처리 시간을 단축하고 메모리 오버헤드를 개선한다. 본 논문의 실험 결과, 약 23GB의 LUBM 데이터에 제시한 방법을 적용했을 때, 크기는 약 3.8배 가량 줄어들었으며 약 106초의 변환 시간이 소모되었다.
웹 2.0 기술이 소개된 이후 소셜 네트워크 서비스는 미래 정보기술의 기초로서 중요하게 인식되고 있다. 이에, 웹2.0 환경에서 소셜 네트워크를 구축하기 위하여 온톨로지 기반의 사용자 프로필 기술 도구인 FOAF를 활용하기 위한 다양한 연구가 이뤄지고 있다. 그러나 FOAF를 이용하여 소셜 네트워크를 생성 및 관리하는 대부분의 방법은 시간의 흐름에 따라 변화하는 사용자의 소셜 네트워크를 자동적으로 반영하기 어려운 단점이 있으며 다양한 소셜 미디어 서비스가 제공되는 환경에서는 FOAF를 동적으로 관리하기가 쉽지 않다. 따라서 본 논문에서는 기존 FOAF를 이용한 소셜 네트워크 추출방법의 한계를 극복하기 위하여 사용자 프로파일 기술 언어인 FOAF와 웹 저작물 출판 매커니즘인 RSS를 OLAP 시스템에 적용시켜 동적으로 FOAF를 갱신하고 관리하기 위한 방법을 제안한다. 본 논문에서 제안하는 방법은 수집한 FOAF와 RSS 파일들을 스타스키마로 설계된 데이터베이스에 넣어 OLAP 큐브를 생성한다. 그리고 OLAP 연산을 이용하여 사용자의 연결관계를 분석하고 FOAF에 그 결과를 반영한다. 본 논문에서 제안하는 방법은 이기종 분산처리 환경 하에서 데이터의 상호호환성을 보장할 뿐만 아니라 시간의 흐름에 따른 사용자의 관심 및 이슈 등의 변화를 효과적으로 반영한다.
본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.
본 논문에서는 스테레오 음악에 오디오 워터마크를 삽입하기 위한 알고리즘을 제안하였다. 스테레오 음악은 2개의 채널을 갖고 있기 때문에 기존 워터마킹 기술은 일반적으로 각 채널을 독립적으로 생각하고 처리하는 경우가 많다. 그러나 스테레오를 모노로 변환하는 과정에서 워터마크의 손실이 발생하는 경우가 많이 발생할 수 있다. 제안한 알고리즘은 스테레오를 모노로 변환하더라도 워터마크의 손실이 발생하지 않도록 워터마크를 삽입할 때 스테레오와 모노변환의 특성을 이용하였다. 제안된 알고리즘에 사용된 오디오 워터마크는 "Copyright"와 "Copy_free"라는 두 가지 정보를 터보코드를 이용하여 생성하였다. 두 워터마크는 9바이트(72비트)로 이루어져 있으며, 오류정정을 위하여 터보코드를 적용하면 222비트로 삽입해야 하는 정보량이 늘어난다. 222비트의 워터마크는 추가적인 오류에 강인하도록 1024비트로 확장하여 최종적으로 스테레오 음악에 삽입할 워터마크로 사용하였다. 평균적으로 SNR은 40dB를 넘어서서 전통적인 양자화 방식보다 10dB 이상의 음질 개선을 가져왔다. 이는 상대적으로 10배의 음질 개선도를 의미하는 것으로 매우 유의미한 결과이다. 또한 워터마크의 추출에 필요한 샘플길이는 1초 이내의 길이면 충분히 추출이 가능하고, 128Kbps의 비트레이트를 갖는 MP3 압축에 대해서도 모두 1초 이내 길이의 음악 샘플로부터 워터마크의 완전한 추출이 가능하였다. 전통적인 양자화 방식이 10초 길이의 샘플을 이용해도 대부분 워터마크의 추출에 실패한 것에 비하면 1/10에 불과한 길이로 워터마크의 추출이 가능하다.
최근의 정보통신기술 발전에 기반한 무인 항공 전자탐사는 효율적인 광역 탐사가 가능하다는 장점으로 인해 다양한 활용이 시도되고 있다. 이 연구에서는 무인 항공 전자탐사의 실제 적용을 위한 이론 연구의 일환으로 한국지질자원연구원에서 개발된 무인 비행선 전자탐사 시스템에 대한 고찰을 수행하였다. 이 시스템은 기존의 항공 전자탐사 시스템들과는 다른 송수신루프의 배치로 인해 측정되는 자기장을 해석하기 위한 새로운 기술이 필요하다. 따라서, 임의의 모양을 갖는 송신원에 의한 전자기장 반응을 계산할 수 있는 방법을 제안하였으며 원형루프에 의한 이론해와의 비교 검증을 통해 그 타당성을 확인하였다. 또한, 3차원적으로 분포한 지하의 전도성 이상체에 의한 자기장 반응을 모사하기 위하여 변유한요소법 기반의 3차원 주파수영역 전자탐사 모델링 알고리듬과 결합하였다. 개발된 알고리듬을 바탕으로 지하 이상체에 의한 자기장 반응분석을 수행한 결과, 기존 항공 전자탐사 시스템들과 마찬가지로 탐사고도가 높아지거나 이상체의 심도가 깊어짐에 따라 이상체에 의한 반응이 줄어듦을 알 수 있었고 이상체의 전기비저항이 증가함에 따라서도 반응이 작아지는 것을 확인하였다. 그러나, 이상체의 심도 및 전기전도도와 사용 주파수에 따라 이상성분의 반응양상이 비선형적인 경향을 나타내는 구간이 존재하여, 자료해석 시 반응의 크기를 통한 단순 해석이 어려워지며 겉보기 비저항 계산 시에도 해의 비유일성을 야기시킬 수 있다는 것을 확인하였다. 따라서 실제로 시스템을 활용하여 탐사를 수행할 시, 탐사목적 및 현장 조건을 고려한 사전 모델링을 통해 적합한 주파수 대역 및 탐사고도를 설정하여 탐사를 수행하는 것이 선행되어야 한다.
한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
/
pp.291-300
/
1999
인터넷을 기반으로 한 정보통신의 급속한 발전이라는 기업환경의 변화에 적응하기 위해서 기업은 점차 모든 경영시스템을 인터넷을 기반으로 하도록 변화시키고 있을 뿐만 아니라, 기업 조직 또한 전세계를 기반으로한 글로벌 기업 형태로 변화하고 있다. 이러한 급속한 경영환경의 변화로 인해서 기업 내에서는 종전과는 다른 형태의 부서간 상호의사결정조정 과정이 필요하게 되었다. 일반 기업들을 대상으로 한 상호의사결정의 지원과정에 대해서는 기존에 많은 연구들이 있었으나 글로벌기업과 같은 네트워크 형태의 새로운 형태의 기업에 있어서의 상호의사결정과정을 지원할 수 있는 의사결정지원시스템에 대해서는 단순한 그룹의사결정지원시스템 또는 분산의사결정지원시스템과 같은 연구들이 주를 이루고 있다. 따라서 본 연구에서는 인터넷 특히, 웹을 기반으로 한 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 메커니즘을 제시하고 이에 기반한 프로토타입 형태의 시스템을 구현하여 성능을 검증하고자 한다. 특히, 기업 내에서 가장 대표적으로 상호의사결정지원이 필요한 생산과 마케팅 부서를 대상으로 상호의사결정지원 메커니즘을 개발하고 실험을 진행하였다. 그 결과 글로벌 기업내의 생산과 마케팅 부서간 상호의사결정을 효율적으로 지원 할 수 있는 상호조정 메카니즘인 개선된 PROMISE(PROduction and Marketing Interface Support Environment)를 기반으로 한 웹 분산의사결정지원시스템 (Web-DSS : Web-Decision Support Systems)을 제안하는 바이다.자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer
무선 인터넷 프록시 서버 클러스터에서 부하 분산기는 사용자의 요청을 각 서버로 분산시키는 역할을 한다. 리눅스 가상 서버(LVS: Linux Virtual Server)는 소프트웨어적으로 사용되는 부하 분산기로써 여러 가지 스케줄링 방식들을 지원한다. LVS 스케줄링 방식에는 라운드 로빈 방식, 해슁 기반 방식, 또는 서버와 부하 분산기 사이에서 서버로 연결된 커넥션 개수를 이용하는 방식이 있다. 일부 향상된 방법에서는 각 서버별로 서버의 최고 성능 범위 안에서 허용된 커넥션 개수의 상한값과 하한값을 사전에 결정하여 이를 스케줄링 시에 적용한다. 그러나, 이러한 스케줄링 방법들에서는 서버의 실시간 부하 정보들이 부하 분산에 반영되지 않는다. 본 논문에서는 서버 부하 정보에 기반한 동적 스케줄링 방식을 제안한다. 제안된 방식에서는 부하 분산기가 서버의 실시간 CPU 부하 정보를 바탕으로 가장 적은 부하를 가지는 서버에 새로운 요청을 할당한다. 16대로 구성된 클러스터링 컴퓨터와 정적 컨텐츠(이미지와 HTML)를 가지고 실험을 수행하였다. 실험결과 CPU를 많이 사용하는 요청과 호스트의 성능이 다른 경우에 대하여 종래의 스케줄링 방식보다 성능이 향상됨을 확인하였다.
컨테이너터미널의 증가로 터미널 물량이 분산되어 기존 물동량 보존과 새로운 물동량 유치 경쟁이 치열해지고 있으며 이에 터미널 물동량 처리 능력과 유치에 다양한 방법을 모색하고 있다. 컨테이너터미널은 물동량처리 능력을 향상시키기 위해서 최신 장비 확충과 최신 터미널 시스템 개발을 통해 터미널의 생산성 향상과 효율성 극대화에 노력을 기울이고 있다. 컨테이너터미널의 생산성 향상에 영향을 줄 수 있는 요인은 다양하게 존재 한다. 그중 야드 이송장비의 경우, 특정 선석크레인(GC, Gantry Crane)에 야드 트랙터(YT, Yard Tractor)가 고정 할당되는 방식에서 다수 선석크레인(GC, Gantry Crane)에 야드 트랙터(YT, Yard Tractor)가 적절하게 분산 할당 방식으로 처리하는 Pooling System으로 전환하게 되면 터미널 생산성과 YT의 가용성을 높일 수 있다. 컨테이너터미널에서 생산성 지표가 되는 KPI는 GC 생산성이고 GC 생산성은 물리적인 GC 작업 속도를 넘어설 수 없기에 Pooling System 적용하여 생산성을 높이는데 의미와 효과는 크다. 본 논문에서는 컨테이너터미널에서 생산성 향상을 위해 이송장비 운영을 더 효율적으로 할 수 있도록 Pooling System 알고리즘을 제시하고 실제로 컨테이너터미널에 적용하여 Non Pooling System과 Pooling System 생산성을 비교하였다. 이송장비 풀링시스템을 도입하여 타 터미널에 비해 생산성을 향상함으로써 터미널 비즈니스에 있어 지속적인 서비스 질과 수익성 향상을 위한 필수불가결한 요소가 될 수가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.