• Title/Summary/Keyword: distance-based clustering algorithm

Search Result 130, Processing Time 0.025 seconds

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images (입체영상에서 특징의 군집화를 통한 대상객체 분할)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4807-4813
    • /
    • 2012
  • Since the existing methods of segmenting target objects from various images mainly use 2-dimensional features, they have several constraints due to the shortage of 3-dimensional information. In this paper, we therefore propose a new method of accurately segmenting target objects from three dimensional stereoscopic images using 2D and 3D feature clustering. The suggested method first estimates depth features from stereo images by using a stereo matching technique, which represent the distance between a camera and an object from left and right images. It then eliminates background areas and detects foreground areas, namely, target objects by effectively clustering depth and color features. To verify the performance of the proposed method, we have applied our approach to various stereoscopic images and found that it can accurately detect target objects compared to other existing 2-dimensional methods.

Fuzzy Clustering Method for the Identification of Joint Sets (절리군 분석을 위한 퍼지 클러스터링 기법)

  • 정용복;전석원
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.294-303
    • /
    • 2003
  • The structural behaviour of rock mass structure, such as tunnel or slope is critically dependent on the various characteristics of discontinuities. Therefore, it is important to survey and analyze discontinuities correctly for the design and construction of rock mass structure. One inevitable Procedure of discontinuity survey and analysis is joint set identification from a lot of raw directional joint data. The identification procedure is generally done by a graphical method. This type of analysis has some shortcomings such as subjective identification results, inability to use extra information on discontinuity, and so on. In this study, a computer program for joint set identification based on the fuzzy clustering algorithm was implemented and tested using two kinds of joint data. It was confirmed that fuzzy clustering method is effective and valid for joint set identification and estimation of mean direction and degree of clustering of huge joint data through the applications.

An Efficient Clustering Algorithm for Massive GPS Trajectory Data (대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링)

  • Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2016
  • Digital road map generation is primarily based on artificial satellite photographing or in-site manual survey work. Therefore, these map generation procedures require a lot of time and a large budget to create and update road maps. Consequently, people have tried to develop automated map generation systems using GPS trajectory data sets obtained by public vehicles. A fundamental problem in this road generation procedure involves the extraction of representative trajectory such as main roads. Extracting a representative trajectory requires the base data set of piecewise line segments(GPS-trajectories), which have close starting and ending points. So, geometrically similar trajectories are selected for clustering before extracting one representative trajectory from among them. This paper proposes a new divide- and-conquer approach by partitioning the whole map region into regular grid sub-spaces. We then try to find similar trajectories by sweeping. Also, we applied the $Fr{\acute{e}}chet$ distance measure to compute the similarity between a pair of trajectories. We conducted experiments using a set of real GPS data with more than 500 vehicle trajectories obtained from Gangnam-gu, Seoul. The experiment shows that our grid partitioning approach is fast and stable and can be used in real applications for vehicle trajectory clustering.

Misclassified Samples based Hierarchical Cascaded Classifier for Video Face Recognition

  • Fan, Zheyi;Weng, Shuqin;Zeng, Yajun;Jiang, Jiao;Pang, Fengqian;Liu, Zhiwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.785-804
    • /
    • 2017
  • Due to various factors such as postures, facial expressions and illuminations, face recognition by videos often suffer from poor recognition accuracy and generalization ability, since the within-class scatter might even be higher than the between-class one. Herein we address this problem by proposing a hierarchical cascaded classifier for video face recognition, which is a multi-layer algorithm and accounts for the misclassified samples plus their similar samples. Specifically, it can be decomposed into single classifier construction and multi-layer classifier design stages. In single classifier construction stage, classifier is created by clustering and the number of classes is computed by analyzing distance tree. In multi-layer classifier design stage, the next layer is created for the misclassified samples and similar ones, then cascaded to a hierarchical classifier. The experiments on the database collected by ourselves show that the recognition accuracy of the proposed classifier outperforms the compared recognition algorithms, such as neural network and sparse representation.

A Study of Optimal path Availability Clustering algorithm in Ad Hoc network (에드 혹 네트워크에서 최적 경로의 유효성 있는 클러스터링 알고리즘에 관한 연구)

  • Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.225-232
    • /
    • 2013
  • In this paper, we introduce a method that can be used to select the position of head node for context-awareness information. The validity of the head node optimal location is saving the energy in the path according to the clustering. It is important how to elect one of the relay node for energy efficiency routing. Existing LEACH algorithm to elect the head node when the node's energy probability distribution function based on the management of the head node is optional cycle. However, in this case, the distance of the relay node status information including context-awareness parameters does not reflect. These factors are not suitable for the relay node or nodes are included in the probability distribution during the head node selects occurs. In particular, to solve the problems from the LEACH-based hierarchical clustering algorithms, this study defines location with the status context information and the residual energy factor in choosing topology of the structure adjacent nodes. The proposed ECOPS (Energy Conserving Optimal path Schedule) algorithm that contextual information is contributed for head node selection in topology protocols. This proposed algorithm has the head node replacement situations from the candidate head node in the optimal path and efficient energy conservation that is the path of the member nodes. The new head node election technique show improving the entire node lifetime and network in management the network from simulation results.

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Optimal Arrangement of Patrol Ships based on k-Means Clustering for Quick Response of Marine Accidents (해양사고 신속대응을 위한 k-평균 군집화 기반 경비함정 최적배치)

  • Yoo, Sang-Lok;Jung, Cho-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.775-782
    • /
    • 2017
  • The position of existing patrol ships has been decided according to subjective judgments, not purely by any reasonable or scientific criteria, because of a lack of access to marine accident positions. In this study, the optimal location of patrol ships is quantitatively determined based on historical marine accident data. The study area used included the coastal sea of Pohang in South Korea. In this study, a k-means clustering algorithm was used to derive the location of patrol ships, and then a Voronoi diagram was used to divide the region around each patrol ship. As a result, the average navigation distance for patrol ships was improved by 4.4 nautical miles, and the average arrival time was improved by 13.2 minutes per marine accident. Moreover, if the locations of patrol ships need to be changed flexibly, it will be possible to optimally arrange limited resources using the technique developed in this study to ensure a fast rescue.

Clustering Methods for Cluster Uniformity in Wireless Sensor Networks (무선센서 네트워크에서 클러스터 균일화를 위한 클러스터링 방법)

  • Joong-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.679-682
    • /
    • 2023
  • In wireless sensor networks, communication failure between sensor nodes causes continuous connection attempts, which results in a large power loss. In this paper, an appropriate distance between the CH(Cluster Head) node and the communicating sensor nodes is limited so that a group of clusters of appropriate size is formed on a two-dimensional plane. To equalize the cluster size, sensor nodes in the shortest distance communicate with each other to form member nodes, and clusters are formed by gathering nearby nodes. Based on the proposed cluster uniformity algorithm, the improvement rate of cluster uniformity is shown by simulation results. The proposed method can improve the cluster uniformity of the network by about 30%.

A Method for Dynamic Clustering-based Efficient Management in Large-Scale IoT Environment (대규모 IoT 컴퓨팅 환경에서 동적 클러스터링 기반 효율적 관리 기법)

  • Kim, Dae Young;La, Hyun Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.85-97
    • /
    • 2014
  • IoT devices that collect information for end users and provide various services like giving traffic or weather information to them that are located everywhere aim to raise quality of life. Currently, the number of devices has dramatically increased so that there are many companies and laboratories for developing various IoT devices in the world. However, research about IoT computing such as connecting IoT devices or management is at an early stage. A server node that manages lots of IoT device in IoT computing environment is certainly needed. But, it is difficult to manage lots of devices efficiently. However, anyone cannot surly know about how many servers are needed or where they are located in the environment. In this paper, we suggest a method that is a way to dynamic clustering IoT computing environment by logical distance among devices. With our proposed method, we can ensure to manage the quality in large-scale IoT environment efficiently.