• 제목/요약/키워드: distance-attenuation

검색결과 230건 처리시간 0.031초

A Study on Setting the Minimum and Maximum Distances for Distance Attenuation in MPEG-I Immersive Audio

  • Lee, Yong Ju;Yoo Jae-hyoun;Jang, Daeyoung;Kang, Kyeongok;Lee, Taejin
    • 방송공학회논문지
    • /
    • 제27권7호
    • /
    • pp.974-984
    • /
    • 2022
  • In this paper, we introduce the minimum and maximum distance setting methods used in geometric distance attenuation processing, which is one of spatial sound reproduction methods. In general, sound attenuation by distance is inversely proportional to distance, that is 1/r law, but when the relative distance between the user and the audio object is very short or long, exceptional processing might be performed by setting the minimum distance or the maximum distance. While MPEG-I Immersive Audio's RM0 uses fixed values for the minimum and maximum distances, this study proposes effective methods for setting the distances considering the signal gain of an audio object. Proposed methods were verified through simulation of the proposed methods and experiments using RM0 renderer.

금속파편 충격 신호분석을 위한 굽힘파의 거리 감쇠 (Distance Attenuation of Bending Wave to Analyze the Loose Parts Impact Signal)

  • 이정한;박진호
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.594-601
    • /
    • 2016
  • Mass estimation analysis of loose-parts in pressure vessel is necessary for the structural integrity assessment of pressure boundary in nuclear power plants. Mass of loose-parts can be generally estimated from the peak values and the center frequency of impact signals. Magnitude of impact signals is, however, inevitably attenuated according to the traveling distance of the signals and depending on the frequencies. Attenuation rate must be therefore carefully compensated for the precise estimation of loose-part mass. This paper proposes a new compensation method for the attenuation rate based on Bessel function instead of Hankel function in conventional method which has a limitation of usage in near the impact location. It was verified that the suggested compensating equation based on the Bessel function can be applied to the attenuation rate calculation without any limitation.

Measurement of DS-CDMA Propagation Distance in Underwater Acoustic Communication Considering Attenuation and Noise

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Huang, Linyun;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.20-26
    • /
    • 2015
  • It is very difficult to design an underwater communication system because of multipath, Doppler effects, noise, and attenuation. These factors lead to errors in the communication performance and maximum propagation distance. In this study, we calculate the distance that can be realized using the direct-sequence code division multiple access (DS-CDMA) technique with direct-sequence spread spectrum (DSSS) in an underwater communication system considering only the attenuation and noise. We also compare the estimated and calculated propagation distances obtained for several different scenarios.

반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델 (Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW))

  • 곽경민;박대길;김영현;정완균;김진현
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

차량통행으로 발생하는 도로진동의 전파특성 (Propagation Characteristics of Road Vibration Generated from Vehicles)

  • 박준철;유승도;신동석;이정희;설증민
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 1999
  • Ground vibrations induced from road were investigated to get the basic data that can be used to prepare countermeasures for environmental vibration problems. Vibration levels were measured simultaneously at three points in double distances from road. These data were analyzed with the type of vehicles. roads, media to understand the magnitudes and characteristics of distance attenuation of road vibrations. Vibration levels recorded on tapes were analyzed to understand the characteristics of frequency of road vibration. The range which could be influenced by the road vibration was estimated to take into account the mean of$L_{max}$ and distance attenuation of vibration level 5 m from roadside.

  • PDF

Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정 (Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope)

  • 최항;윤병익
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Analysis of Traffic Noise Propagation around Main Roads in Kwang-ju City

  • Choi, Hyung-II;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2000
  • This paper describes an analysis of various factors affecting traffic noise propagation, including the distance from the road, existence of a direct path of noise propagation, density and height of buildings, and procedure for predicting the attenuation of noise levels from roads. The analysis is based on a multiple number of regression models, utilizing the quantification theory of the first kind. This study incorporates a large amount of survey data concerning traffic noise propagation. The survey of the traffic noise propagation around main roads was carried out in several residential areas, mainly in Kwangju. The attenuation of noise levels measured provided 691 usable data samples. A multiple regression analysis demonstrated that the distance from the road makes the most significant contribution to the attenuation of the noise level. The second contributor was found to be the existence of a direct path of noise propagation. The building density and average height of the buildings also affected the attenuation of the noise level considerably. Other factors, such as the height of the building behind the receiver microphone and the number of traffic lanes on the noise-source roads, did not contribute as much to the attenuation of the noise level as the factors mentioned avove.

  • PDF

초음파 광역 감쇠의 온도 특성에 관한 연구 (A Study on Temperature Features of Broadband Ultrasonic Attenuation)

  • 신정식;안중환;한승무;김형준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.245-248
    • /
    • 1997
  • The distilled water is used for the ultrasonic wave propagating material in the measurements of broadband ultrasonic attenuation (BUA) that is applied in industrial and medical applications, The acoustic impedance of water is significantly changed with its temperature. Therefore, the quantitative evaluation of BUA with temperature and the ultrasonic wave propagating distance is highly needed. In this study, we evaluated the variation of attenuation with change in temperature. To measure the variation of BUA in the low frequency region at the temperatures, 27$^{\circ}C$, 29$^{\circ}C$, and 31$^{\circ}C$, we tested the Plyethylene, Teflon, MC-Nylon, Urethane specimens and analyzed the center frequency, frequency bandwidth, spectral peak amplitude. The results showed that BUA value appeared to be lower with increasing temperature. This may be due to the fact that the frequency feature of ultrasonic wave is affected by not only the specific gravity, acoustic impedence, but material crystalline, porosity, the distance of ultrasonic wave propagation in water.

  • PDF

지표면상을 전파하는 소음의 초과감쇠 산정방법에 관한 연구 (A study of estimation for excess attenuation of Noise propagated on the ground)

  • 오재응;김동규;임동규
    • 한국음향학회지
    • /
    • 제7권2호
    • /
    • pp.20-25
    • /
    • 1988
  • 본 연구는 소음전파에 대한 옥외실험과 축적 음향모형실험에 의해서 지표면에 의한 초과감쇠 특징을 밝힌 것으로써, 옥외실험에 의한 소음전파감쇠는 음향출력이 큰 소형엔진을 사용하여, 거리감쇠로부터 산출한 실측의 초과감쇠와 Log(D/(Hs+Hr))의 관계를 확인했다. 그 결과 소음전파감쇠는 풍향, 주파수에 따라 다르며 직선회귀 된다는 것을 알 수 있었다. 그리고, 지표면상의 초과감쇠치는 통기저항을 이용해서 Log(D/Hs+Hr))을 파라미터로써 구할 수 있었고, 가장 적당한 통기저항$\sigma$는 실측의 초과감쇠치와 임의의 $\sigma$에 대한 $L=-20Log\mid1+(r_1/r_2)Qexp(ik, \bigtriangleup r)\mid$ 식의 평균자승 오차가 가장 적어질 때 결정된다. 모형의 지표로써 축척 1/40의 모형실험으로, 큰 무향실내에서 거리감쇠의 측정을 한 결과, 실측치와의 대응이 충분하다는 것을 확인했다.

  • PDF

도로교통소음의 전파특성 및 영향 (Propagation Characteristics and Effects of Road Traffic Noise)

  • 박준철;김윤신;강대준
    • 한국환경보건학회지
    • /
    • 제34권4호
    • /
    • pp.311-315
    • /
    • 2008
  • This study was performed to investigate propagation characteristics and effects of road traffic noise generated from vehicles. Noise levels of expressway and general road were measured at four points in a straight line based on distance from the road, and analyzed. The average noise level of expressway was 78.9 dBA at 5 m, 76.4 dBA at 10 m, 72.0 dBA at 20 m, 69.0 dBA at 30 m. That of general road was lower about $3.1{\sim}3.5\;dBA$ than that of expressway. There was no significant difference in distance attenuation between expressway noise and general road noise. The farer the distance from source is, the more the attenuation is. The influence range of noise is assessed by noise environmental standards or road noise limits. Noise levels of the time zone were measured at a boundary line of apartment to grasp noise variation by time. The time zone of lowest noises was $3{\sim}4$ a.m. and that of highest noise was $8{\sim}10$ a.m. Data recorded on tapes were analyzed to understand the characteristics of frequency because these characteristics are important factors to plan the noise reduction measures, namely path measures.