• Title/Summary/Keyword: distance transform

Search Result 435, Processing Time 0.027 seconds

Matching algorithm for self-propellent artillery position on satellite image Using chamfer distance (챔퍼 디스턴스를 이용한 위성영상 상의 북한군 자주포진지 매칭기법)

  • Kim, Sanghun;Lee, Soon-Young;Yun, Ildong;Lee, Sanguk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.451-453
    • /
    • 2011
  • 본 논문에서는 챔퍼 디스턴스 매칭(chamfer distance matching)를 이용하여 위성 영상 상의 북한군 자주포진지(self-propellent artillery position)를 매칭하는 기법을 제안한다. 먼저 입력되는 위성 영상을 잡음환경에 강인한 가우시안-라플라시안 연산자를 이용하여 에지(edge)를 추출한다. 추출된 에지 영상의 각 픽셀에 대해 가장 가까운 에지까지의 거리를 나타내는 거리 변환(distance transform) 영상을 생성한다. 템플릿 영상은 다양한 자주포진지 영상에서 샘플링된 영상으로 에지를 추출한 후 거리 변환을 거친다. 마지막으로 템플릿 영상을 입력된 거리 변환 영상에 윈도우 슬라이딩(window sliding)하여 최소값의 가지는 위치를 구한다. 제안 기법은 잡음에 강인한 가우시안-라플라시안 연산자를 사용하여 기상조건에 의한 입력 영상의 편차에도 효율적인 매칭이 가능하다. 또한 에지 기반의 챔퍼 매칭을 이용하기 때문에 비 균일 조명 환경에서도 강인한 매칭이 이루어진다. 전산 모의 실험에서 제안 알고리즘은 입력 위성 영상 상의 자주포진지를 적은 계산량으도 신뢰있게 매칭함을 보여준다.

  • PDF

Improved Face Recognition based on 2D-LDA using Weighted Covariance Scatter (가중치가 적용된 공분산을 이용한 2D-LDA 기반의 얼굴인식)

  • Lee, Seokjin;Oh, Chimin;Lee, Chilwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1446-1452
    • /
    • 2014
  • Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.

A Colony Counting Algorithm based on Distance Transformation (거리 변환에 기반한 콜로니 계수 알고리즘)

  • Mun, Hyeok;Lee, Bok Ju;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.24-29
    • /
    • 2016
  • One of the main applications of digital image processing is the estimation of the number of certain types of objects (cells, seeds, peoples etc.) in an image. Difficulties of these counting problems depends on various factors including shape and size variation, degree of object clustering, contrast between object and background, object texture and its variation, and so on. In this paper, a new automatic colony counting algorithm is proposed. We focused on the two applications: counting the bacteria colonies on the agar plate and estimating the number of seeds from images captured by smartphone camera. To overcome the shape and size variations of the colonies, we adopted the distance transformation and peak detection approach. To estimate the reference size of the colony robustly, we also used k-means clustering algorithm. Experimental results show that our method works well in real world applications.

Selective Volume Rendering Using Global Shape Information (전역적 형태정보를 이용한 선택적 볼륨렌더링)

  • Hong, Helen;Kim, Myoung-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3280-3289
    • /
    • 2000
  • In this paper,we propose a novel technoque of improving volume rendering quality and speed by integrating volume data and global shape information together. The selective volume rendering method is to generate distance transformed volume using a distance transform to determine the minimum distance to the neaest intercsting part and then render it. The shape information prevents from object occlusions come from similar intensity of each object. Thus it provides effective visual results that enable to get a clear understanding of complex structures. We show the results of selective volume rendering method for left ventricle and right ventricle ans well as the results of selective sampling methods depending on the interpolation from EBCT cardiac images. Our method offers an accelerated technique to accurately visuahze the surfaces of devined objects segmented from the volume.

  • PDF

Long Distance Identification of Water and Oil using an Ultraviolet Fluorescence Measurement System (원거리의 물과 오일을 구별할 수 있는 UV형광측정시스템 개발과 분석에 대한 연구)

  • Baek, Kyung-hoon;Lee, Joon-seok;Jeon, Su-jeong;Park, Bo-ram;Park, Seong-wook
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.266-270
    • /
    • 2022
  • Owing to the rising volume of seaborne trade, oil spills damage the marine environment for over 250 yearly. Thus, various analysis methods such as the Fourier-transform infrared (FTIR), Raman spectroscope, and gas chromatography are used to monitor oil spills at sea, but these methods are expensive. Recently, to reduce operational costs, an underwater fluorometer was adopted. However, this approach is not ideal for the remote sensing of oil spills because the device gets submerged in the sea. In this study, we have designed and developed a monitoring system that uses ultraviolet fluorescence to detect spilled oil or water from a distance, as well as proposed an analyzing method defining based on water Raman signal and QF535. Each fluorescence spectrum of water, oil (crude oil), and Bunker A was obtained using the system, and was calculated and analyzed from the spectrum individually. Based on the results of the analysis, we could successfully identity water and oil at a long distance.

A Simple Paint Thickness Estimation Model in Shipyard Spray Painting

  • Geun-Wan, Kim;Seung-Hun, Lee;Yung-Keun, Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This paper aims to develop a model to estimate the paint thickness in a shipyard spray painting according to changes of spraying distance and speed. We acquired the experimental datasets of five different conditions with respect to the spraying distance and speed using a painting robot. In addition, we applied a preprocessing step to handle noises which might be caused by various reasons such as a nozzle damage. Our method is to transform a thickness function of a specified spraying distance and speed into another function of an unknown spraying and speed. We observed that the proposed method shows more stable and more accurate predictions compared with an artificial neural network-based approach.

GCP Placement Methods for Improving the Accuracy of Shoreline Extraction in Coastal Video Monitoring

  • Changyul Lee;Kideok Do;Inho Kim;Sungyeol Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.174-186
    • /
    • 2024
  • In coastal video monitoring, the direct linear transform (DLT) method with ground control points (GCPs) is commonly used for geo-rectification. However, current practices often overlook the impact of GCP quantity, arrangement, and the geographical characteristics of beaches. To address this, we designed scenarios at Chuam Beach to evaluate how factors such as the distance from the camera to GCPs, the number of GCPs, and the height of each point affect the DLT method. Accuracy was assessed by calculating the root mean square error of the distance errors between the actual GCP coordinates and the image coordinates for each setting. This analysis aims to propose an optimal GCP placement method. Our results show that placing GCPs within 200 m of the camera ensures high accuracy with few points, whereas positioning them at strategic heights enhances shoreline extraction. However, since only fixed cameras were used in this study, factors like varying heights, orientations, and resolutions could not be considered. Based on data from a single location, we propose an optimal method for GCP placement that takes into account distance, number, and height using the DLT method.

Robust Face Recognition Against Illumination Change Using Visible and Infrared Images (가시광선 영상과 적외선 영상의 융합을 이용한 조명변화에 강인한 얼굴 인식)

  • Kim, Sa-Mun;Lee, Dea-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • Face recognition system has advanctage to automatically recognize a person without causing repulsion at deteciton process. However, the face recognition system has a drawback to show lower perfomance according to illumination variation unlike the other biometric systems using fingerprint and iris. Therefore, this paper proposed a robust face recogntion method against illumination varition by slective fusion technique using both visible and infrared faces based on fuzzy linear disciment analysis(fuzzy-LDA). In the first step, both the visible image and infrared image are divided into four bands using wavelet transform. In the second step, Euclidean distance is calculated at each subband. In the third step, recognition rate is determined at each subband using the Euclidean distance calculated in the second step. And then, weights are determined by considering the recognition rate of each band. Finally, a fusion face recognition is performed and robust recognition results are obtained.

Arbitrary Viewpoint/Disparity Stereoscopic Image Generation from a Digital Hologram (디지털 홀로그램으로부터 임의시점/임의시차 스테레오스코픽 영상 생성)

  • Lee, Yoon-Hyuk;Choi, Hyun-Jun;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.854-865
    • /
    • 2014
  • This paper proposes a method to generate a stereoscopic image pair from a digital hologram by considering the situation that digital hologram data is serviced but the end-user does not have the proper display equipment, etc. We use Fresnel transform as the method to convert a digital hologram into an image. Each image of the stereoscopic image pair uses a part of the given digital hologram and the sizes of the two partial digital holograms for the two images are chosen to be the same. Here, the size of the image is adjusted by the size of the partial digital hologram and the disparity between the pair images is adjusted by the distance between the centers of the two partial hologram. This paper also deals with how to adjust the size and the disparity of the images. In this paper the generated stereoscopic images are implemented as an anaglyphic display type to confirm the feeling of distance by wearing the red-blue glasses.