• Title/Summary/Keyword: distance measures

Search Result 697, Processing Time 0.024 seconds

Comparison of time series clustering methods and application to power consumption pattern clustering

  • Kim, Jaehwi;Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.589-602
    • /
    • 2020
  • The development of smart grids has enabled the easy collection of a large amount of power data. There are some common patterns that make it useful to cluster power consumption patterns when analyzing s power big data. In this paper, clustering analysis is based on distance functions for time series and clustering algorithms to discover patterns for power consumption data. In clustering, we use 10 distance measures to find the clusters that consider the characteristics of time series data. A simulation study is done to compare the distance measures for clustering. Cluster validity measures are also calculated and compared such as error rate, similarity index, Dunn index and silhouette values. Real power consumption data are used for clustering, with five distance measures whose performances are better than others in the simulation.

Distance measure between intuitionistic fuzzy sets and its application to pattern recognition

  • Park, Jin-Han;Lim, Ki-Moon;Kwun, Young-Chel
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.556-561
    • /
    • 2009
  • In this paper, we propose new method to calculate the distance between intuitionistic fuzzy sets(IFSs) based on the three dimensional representation of IFSs and analyze the relations of similarity measure and distance measure of IFSs. Finally, we apply the proposed measures to pattern recognitions.

Locating the damaged storey of a building using distance measures of low-order AR models

  • Xing, Zhenhua;Mita, Akira
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.991-1005
    • /
    • 2010
  • The key to detecting damage to civil engineering structures is to find an effective damage indicator. The damage indicator should promptly reveal the location of the damage and accurately identify the state of the structure. We propose to use the distance measures of low-order AR models as a novel damage indicator. The AR model has been applied to parameterize dynamical responses, typically the acceleration response. The premise of this approach is that the distance between the models, fitting the dynamical responses from damaged and undamaged structures, may be correlated with the information about the damage, including its location and severity. Distance measures have been widely used in speech recognition. However, they have rarely been applied to civil engineering structures. This research attempts to improve on the distance measures that have been studied so far. The effect of varying the data length, number of parameters, and other factors was carefully studied.

Measure of the Associations of Accupoints and Pathologies Documented in the Classical Acupuncture Literature (고의서에 나타난 경혈과 병증의 연관성 측정 및 시각화 - 침구자생경 분석 예를 중심으로 -)

  • Oh, Junho
    • Korean Journal of Acupuncture
    • /
    • v.33 no.1
    • /
    • pp.18-32
    • /
    • 2016
  • Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.

Object matching algorithms using robust hausdorff distance measure (Robust hausdorff 거리 척도를 이용한 물체 정합 알고리듬)

  • 권오규;심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.93-101
    • /
    • 1997
  • A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper proposes three object matching algorithm using robust HD measures based on M-estimation, least trimmed square (LTS), and .alpha.-trimmed mean methods, which are more efficient than the conventional HD measures. By computer simulation with synthetic and real images, the matching performance of the conventional HD smeasures and proposed' robust ones is compared.

  • PDF

A Performance Analysis of the Face Recognition Based on PCA/LDA on Distance Measures (거리 척도에 따른 PCA/LDA기반의 얼굴 인식 성능 분석)

  • Song Young-Jun;Kim Young-Gil;Ahn Jae-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.3
    • /
    • pp.249-254
    • /
    • 2005
  • In this paper, we analysis the recognition performance of PCA/LDA by distance measures. We are adapt to ORL face database with the fourteen distance measures. In case of PCA, it has high performance for the manhattan distance and the weighted SSE distance to face recognition, In case of PCA/LDA, it has high performance for the angle-based distance and the modified SSE distance. Also, PCA/LDA is better than PCA for reduction of dimension. Therefore, the PCA/LDA method and the angle-based distance have the most performance and a few dimension for face recognition with ORL face database.

  • PDF

Minimum Distance Estimation Based On The Kernels For U-Statistics

  • Park, Hyo-Il
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.113-132
    • /
    • 1998
  • In this paper, we consider a minimum distance (M.D.) estimation based on kernels for U-statistics. We use Cramer-von Mises type distance function which measures the discrepancy between U-empirical distribution function(d.f.) and modeled d.f. of kernel. In the distance function, we allow various integrating measures, which can be finite, $\sigma$-finite or discrete. Then we derive the asymptotic normality and study the qualitative robustness of M. D. estimates.

  • PDF

Word Separation in Handwritten Legal Amounts on Bank Check by Measuring Gap Distance Between Connected Components (연결 성분 간 간격 측정에 의한 필기체 수표 금액 문장에서의 단어 추출)

  • Kim, In-Cheol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2004
  • We have proposed an efficient method of word separation in a handwritten legal amount on bank check based on the spatial gaps between the connected components. The previous gap measures all suffer from the inherent problem of underestimation or overestimation that causes a deterioration in separation performance. In order to alleviate such burden, we have developed a modified version of each distance measure. Also, 4 class clustering based method of integrating three different types of distance measures has been proposed to compensate effectively the errors in each measure, whereby further improvement in performance of word separation is expected. Through a series of word separation experiments, we found that the modified distance measures show a better performance with over 2 - 3% of the word separation rate than their corresponding original distance measures. In addition, the proposed combining method based on 4-class clustering achieved further improvement by effectively reducing the errors common to two of three distance measures as well as the individual errors.

Signal Processing for Speech Recognition in Noisy Environment (잡음 환경에서 음성 인식을 위한 신호처리)

  • Kim, Weon-Goo;Lim, Yong-Hoon;Cha, Il-Whan;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • This paper studies noise subtraction methods and distance measures for speech recognition in a noisy environment, and investigates noise robustness of the distance measures applied to the problem of isolated word recognition in white Gaussian and colored noise (vehicle noise) environments. Noise subtraction methods which can be used as a pre-processor for the speech recognition system, such as the spectral subtraction method, autocorrelation subtraction method, adaptive noise cancellation and acoustic beamforming are studied, and distance measures such and Log Likelihood Ratio ($d_{LLR}$), cepstral distance measure ($d_{CEP}$), weighted cepstral distance measure ($d_{WCEP}$), spectral slope distance measure ($d_{RPS}$) and cepstral projection distance measure ($d_{CP},\;d_{BCP},\;d_{WCP},\;d_{BWCP}$) are also investigated. Testing of the distance measures for speaker-dependent isolated word recognition in a noisy environment indicate that $d_{RPS}\;and\;d_{WCEP}$ which weigh higher order cepstral coefficients more heavily give considerable performance improvement over $d_{CEP}and\;d_{LLR}$. In addition, when no pre-emphasis is performed, the recognizer can maintain higher performance under high noise conditions.

  • PDF

Modified distance measures for PCA-based face recognition

  • Song Young-Jun;Kim Young-Gil;Kim Nam
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.1-4
    • /
    • 2005
  • In this paper, we compare 5 weighted distance measures between feature vectors with respect to the recognition performance of the principal component analysis(PCA)-based face recognition method, and propose modified weighted distance. The proposed method was modification of z, the weighted vector. The simulation was performed using the ORL face database, showed the best result for some weighted distances such as weighted manhattan, weighted angle-based, weighted modified manhattan, and weighted modified SSE. We also showed that using some various values of z(weighted values) we can achieve better recognition results that using the existing weighted value.

  • PDF