• Title/Summary/Keyword: distance measurement sensor

Search Result 348, Processing Time 0.026 seconds

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF

A Study on the Multipurpose Golf Putting Range Finder using IR Razer Sensor and Inertial Sensor (IR 레이저 센서 및 관성 센서를 이용한 다목적 골프 퍼팅 거리 측정기에 대한 연구)

  • Min-Seoung Shin;Dae-Woong Kang;Ki-Deok Kim;Ji-Hwan Kim;Chul-Sun Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.669-676
    • /
    • 2023
  • In this paper, a multi-purpose golf putting range finder based on an IR razer sensor and an inertial sensor was designed and made. It was designed to measure distance and slope within a 50m outdoor measurement range for the main purpose of golf putting distance measurement, and at the same time, it is designed to measure temperature information that affects putting. In addition, the distance meter supports house maintenance work by providing length and horizontality measurement values within the indoor 80m measurement range, and provides safety from indoor or vehicle fires by providing indoor temperature measurement values to mobile phones through linkage with the web server. In order to evaluate the accuracy of the proposed method and its interworking performance with a smartphone, a prototype was produced and a web server was built, and the usefulness was confirmed by showing an acceptable error rate within 5% in repeated experiments.

A Development of Displacement Measurement System using Ultrasonic Sensor (초음파 센서를 이용한 변위 측정 시스템 개발)

  • Kim, Jung-Sup;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.142-145
    • /
    • 1995
  • This paper is to develop a measurement system of the displacement distance using ultrasonic sensors. Two 400KHz ultrasonic sensors are used for realizing the measurement system, such as one sensor transmits the sine wave and the other sensor receives this wave. The displacement is measured by the phase difference between transmitting and receiving signals. A phase defecter transforms phase difference to voltage. Because the output voltage pattern has nonlinear characteristics, the relations of the voltage and the distance are learned by a neural network. As the results of teaming, the efficiency of measurement system is improved. This system can measure the displacement distance at the accuracy of 1 micrometer level.

  • PDF

A Distance Measurement System Using a Laser Pointer and a Monocular Vision Sensor (레이저포인터와 단일카메라를 이용한 거리측정 시스템)

  • Jeon, Yeongsan;Park, Jungkeun;Kang, Taesam;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, many unmanned aerial vehicle (UAV) studies have focused on small UAVs, because they are cost effective and suitable in dangerous indoor environments where human entry is limited. Map building through distance measurement is a key technology for the autonomous flight of small UAVs. In many researches for unmanned systems, distance could be measured by using laser range finders or stereo vision sensors. Even though a laser range finder provides accurate distance measurements, it has a disadvantage of high cost. Calculating the distance using a stereo vision sensor is straightforward. However, the sensor is large and heavy, which is not suitable for small UAVs with limited payload. This paper suggests a low-cost distance measurement system using a laser pointer and a monocular vision sensor. A method to measure distance using the suggested system is explained and some experiments on map building are conducted with these distance measurements. The experimental results are compared to the actual data and the reliability of the suggested system is verified.

Development of Automated Guidance Tracking Sensor System Based on Laser Distance Sensors

  • Kim, Joon-Yong;Kim, Hak-Jin;Shim, Sung-Bo;Park, Soo-Hyun;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Purpose: Automated guidance systems (AGSs) for mobile farm machinery have several advantages over manual operation in the crop production industry. Many researchers and companies have tried to develop such a system. However, it is not easy to evaluate the performance of an AGS because there is no established device used to evaluate it that complies with the ISO 12188 standard. The objective of this study was to develop a tracking sensor system using five laser distance measurement sensors. Methods: One sensor-for long-range distance measurement-was used to measure travel distance and velocity. The other four sensors-for mid-range distance measurement-were used to measure lateral deviation. Stationary, manual driving, and A-B line tests were conducted, and the results were compared with the real-time kinematic differential global positioning system (RTK-DGPS) signal used by the AGS. Results: For the stationary test, the average error of the tracking sensor system was 1.99 mm, and the average error of the RTK-DGPS was 15.19 mm. For the two types of driving tests, the data trends were similar. A comparison of the changes in lateral deviation showed that the data stability of the developed tracking system was better. Conclusions: Although the tracking system was not capable of measuring long travel distances under strong sunlight illumination because of the long-range sensor's limitations, this dilemma could be overcome using a higher-performance sensor.

Moving Distance Measurement System using a Accelerometer Sensor (가속도 센서를 이용한 이동거리 측정 시스템)

  • Park, Seung-Hun;Lee, Jung-Hoon;Kim, Sung-Woo;Lim, Jae-Hwan;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1300-1305
    • /
    • 2012
  • In this research, we propose a momentum measurement system using the accelerometer sensor, MCU, and Bluetooth to measure the exact momentum. The proposed system can figure out information for the real time travel distance. We performed various experiments, and analyzed the results using the proposed momentum measurement system. In the simulation experiments, we compared the reliability and accuracy for the existing momentum measurement systems from the analyzed results. The proposed system showed travel distance error of less than 8% as compared to the existing system with the error of approximately 13%. We expect that the proposed system apply to the commercial products.

A Study on the Object Angle Inference in a Sonar Sensor Array System (초음파센서 배열 시스템에서 물체의 각도 추론에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.271-274
    • /
    • 1998
  • Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.

  • PDF

Quantity Measurement by CAFFE Model and Distance and Width Measurement by Stereo Vision (CAFFE 모델을 이용한 수량 측정 및 스테레오 비전을 이용한 거리 및 너비측정)

  • Kim, Won-Seob;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.679-684
    • /
    • 2019
  • We propose a method to measure the number of specific species of class using CAFFE model and a method to measure length and width of object using stereo vision. To obtain the width of an object, the location coordinates of objects appearing on the left and right sensor is compared and the distance from the sensor to the object is obtained. Then the length of the object in the image by using the distance and the approximate value of the actual length of the object is calculated.

A Study on the Moving Distance Measurement System using a Accelerometer Sensor (가속도 센서를 이용한 이동거리 측정 시스템 연구)

  • Park, Seung-Hun;Kim, Sung-Woo;Lim, Jae-Hwan;Ryu, Jee-Youl
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.283-285
    • /
    • 2012
  • In this research, we produced a simple momentum measurement system which figures out information for the real-time travel distance with modularizing a momentum measurement system by using the acceleration sensor, MCU and Bluetooth to measure the exact momentum. In the simulation experiments, we compared the reliability and accuracy of the new momentum measurement system with those of existing momentum measurement systems to confirm that the new momentum measurement system shows superior reliability and accuracy. Base on this results, we will produce the enhanced momentum measurement system, compact and possible to shoe-mount, in future.

  • PDF