• Title/Summary/Keyword: distance learning

Search Result 1,035, Processing Time 0.026 seconds

Satisfaction Survey on Video Lectures using the Metaversity App (메타버시티 앱을 이용한 동영상 강의 만족도 조사)

  • Jeongkyu Park;Byeongkyou Jeon;KyeongHwan Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 2024
  • Recently, Metaverse technology has emerged as an important topic in various fields. Metaverse refers to a three-dimensional virtual space in which social and economic activities similar to the real world are possible. Among the 235 third-year students who applied the Metaversity app in the radiology department of this university from September to December 2023, 200 participated in a survey to determine the difference in student response and satisfaction when applying the Metaversity app. analyzed. First, the most satisfactory VOD viewing method was viewing through the Metaversity app, followed by viewing through the LMS. Second, 'I think online videos are appropriate for holiday reinforcement.' showed the highest score at 4.35±0.60, 'I want face-to-face classes and online classes to be held simultaneously.' was 4.25±0.87, and 'I think meta. 'I watched it well through the Metaversity app' was the lowest at 4.10±0.30, and 'VOD viewing through the Metaversity app was used appropriately in class' was the lowest at 3.99±0.75. Also, there was no significant difference in the response to the teaching method (p>0.05). Third, in terms of satisfaction with VOD viewing using the Metaversity app, 'Applying the Metaversity app was interesting and fun' ranked the highest at 4.24±0.88. The score was high, with 'Better improvement is needed to actively utilize the metaversity app' at 4.00±0.45, and 'I hope the metaversity app is implemented in other remote classes' at 3.77±0.88. appear. 'VOD classes through the Metaversity app are better than the existing LMS method.' was found to be 3.44±0.66. Additionally, there was no significant difference in satisfaction with classes according to age and gender (p>0.05). The correlation between response and satisfaction with the metaversity app is 0.601, which can be considered very significant (p>0.001). As a limitation of this study, although we surveyed students' satisfaction with using the Metaversity app, we were unable to investigate the satisfaction of instructors who interact with students. In the future, we did not consider the instructor's satisfaction in classes using the Metaversity app. Research must be conducted, and universities must have institutional support and continued interest until metaversity apps are selected and used to prepare for distance learning.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF