• 제목/요약/키워드: dissolution temperature

검색결과 414건 처리시간 0.022초

XLPE의 glass 전이점에서 전기전도 특성 (Characteristics of electrical conduction in glass transition point of XLPE)

  • 임호환;김의균;국상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.763-765
    • /
    • 1988
  • Thermally stimulated current, cubical expension, capability change were measured by temperature variation. According to the capability change, TSC peak value was increased. We found that the crystal dissolution is 375 K and amorphous state becomes 388K. Charged partical behavior in the dipole and electronic trop were found iomic conduction in the low field and electronic conduction in the high field. Charged particle in the semiconduction storey was aceumulated in the interface by electron injection which can be arise TSC.

  • PDF

Ultrafine Grained Steels Processed by Equal Channel Angular Pressing

  • Shin, Dong Hyuk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.23-26
    • /
    • 2006
  • Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability.

SCC Mechanism of Ni Base Alloys in Lead Contaminated Water

  • Hwang, Seong Sik;Kim, Dong Jin;Lim, Yun Soo;Kim, Joung Soo;Park, Jangyul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.187-191
    • /
    • 2008
  • Transgranular stress corrosion cracking of nickel base alloys was reported by Copson and Dean in 1965. Study to establish this cracking mechanism needs to be carried out. Laboratory stress corrosion tests were performed for mill annealed(MA) or thermally treated(TT) steam generator tubing materials in a high temperature water containing lead. An electrochemical interaction of lead with the alloying elements of SG tubings was also investigated. Alloy 690 TT showed a transgranular stress corrosion cracking in a 40% NaOH solution with 5000 ppm of lead, while intergranular stress corrosion racking was observed in a 10% NaOH solution with 100 ppm lead. Lead seems to enhance the disruption of passive film and anodic dissolution of alloy 600 and alloy 690. Crack tip blunting at grain boundary carbides plays a role for the transgranular stress corrosion cracking.

Ti 첨가강 열영향부 조직과 인성에 미치는 질소의 영향 (Effects of Nitrogen on the Microstructure and Toughness of HAZ in Ti-Containing Steel)

  • 김병철;방국수
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.91-97
    • /
    • 2002
  • Variation of HAZ toughness of Ti-containing steel with nitrogen content was investigated and interpreted in terms of its microstructure and the amount of soluble nitrogen present. The amounts of Ti and Al combined in TiN and AlN, respectively, in HAZ at $1400^{\circ}C$ peak temperature were less than those in base plate; 55~88% in TiN and 21~28% in AlN, indicating the dissolution of nitrifies in HAZ. The calculated amounts of soluble nitrogen using the thermodynamic analysis showed a good agreement with the measured values in other experiment. Therefore, the analysis can be used to estimate the amount of soluble nitrogen in HAZ. Simulated HAZ toughness was influenced not only by its microstructure but also by the amount of soluble nitrogen present after the formation of BN during the cooling cycle of welding. It showed maximum value when the nitrogen content is in stoichiometric ratio with titanium content, showing that soluble nitrogen in HAZ is detrimental to its toughness.

광전자 분광법으로 분석한 스테인레스 강 304의 산화 표면 (The Oxidized Surface of Stainless Steel 304 Analyzed with X-ray Photoelectron Spectroscopy)

  • 이경철;함경희;안운선
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.144-150
    • /
    • 1991
  • The stainless steel 304 oxidized at $70^{\circ}C$ in 2.5M CrO3/5.0M H2SO4 solution and at $200^{\circ}C$ , $300^{\circ}C$, and $400^{\circ}C$ in the air are analyzed with X-ray Photoelectron Spectroscopy (XPS) to obtain depth composition profile of the surface region. It is confirmed that the surface region has a quite different composition from that of the bulk. This is due to a difference in the outward diffusion rates of the oxidized species in the surface region. The order of diffusion rates is Fe > Cr > Ni in the experimental temperature range. In spite of the inferior rate of diffusion, Cr is enriched in the surface when it is oxidized in the CrO3/H2SO4 solution. This is due to preferential dissolution of oxidized Fe.

  • PDF

Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl

  • Xu, Huan-Yan;Prasad, Murari;Wang, Peng
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.803-807
    • /
    • 2010
  • Schorl modified by $H_2SO_4$ has been successfully developed to enhance schorl-catalyzed Fenton-like reaction for removal of phenol in an aqueous solution. The phenol removal percentage can be increased from 4% to 100% by the system of modified schorl and $H_2O_2$. Batch experiments indicate that the percent increases in removal of phenol by increasing the dosage of catalyst, temperature and initial concentration of $H_2O_2$. The results of XRD, FT-IR and SEM suggest that no new phases are formed after removal of phenol by modified schorl. ICP-AES results reveal that more dissolution of iron results in higher catalytic oxidant activity in the system of modified schorl and $H_2O_2$. Besides minor adsorption, mineral-catalyzed Fenton-like reaction governs the process.

Effect of the Heat Treatment Parameters on the Phase Transformation and Corrosion Resistance of Fe-14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee Yong;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.56-61
    • /
    • 2007
  • Carbide dissolution during heating processes can change chemical composition of martensitic stainless steel in its austenitic phase. Although the austenitizing treatments were carried out at a homogeneous austenite region, the amount of carbon atom in the matrix differs. Increase in the amount of carbon contents in the matrix resulted in decreasing MS temperature, which consequently causes the volume fraction of the retained austenite to increase. This study reveals the effects of the austenitizing treatment on the properties of Fe - 0.3C - 14Cr - 3Mo martensitic stainless steel change with different austenitizing temperatures.

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

초임계 유체내의 나프탈렌의 용해도 (Solubilities of Naphthalene in Supercritical Fluids)

  • 김정림;김호건;경진범
    • 대한화학회지
    • /
    • 제32권4호
    • /
    • pp.311-317
    • /
    • 1988
  • 임계점 이상의 여러 온도와 압력에서 암모니아내의 나프탈렌의 용해도를 측정함으로써 용해도와 암모니아의 밀도 사이의 관계를 간단한 식으로 나타낼 수 있었다. 이 식을 이용하여 더 높은 압력이나 더 낮은 압력에서의 용해도를 계산할 수가 있으며, 이로부터 용해에 수반되는 에너지 변화와 엔트로피변화를 구하고, 초임계 이산화탄소내의 나프탈렌의 용해도 자료로부터 얻어진 결과와 비교하였다. 또한 나프탈렌과 암모니아 사이의 상호작용 비리알 계수를 결정하여 나프탈렌과 이산화탄소 사이의 경우와 비교 검토하였다.

  • PDF

Aggregation and Dissolution of Cationic Dyes with an Anionic Surfactant

  • Park, Joon-Woo;Chung, He-SSon
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권2호
    • /
    • pp.113-116
    • /
    • 1986
  • Spectral behaviors of cationic dyes, methylene blue(MB) and acridine orange(AO), with varying concentrations of sodium dodecylsulfate(SDS) were studied. At low concentration of SDS(<1mM), these dyes formed insoluble dye-surfactant aggregates. When [SDS] is 4-5 mM, the aggregates were dissolved into mixed micelles of constant composition. At higher concentration of [SDS], the composition of mixed micelles were changed with [SDS], resulting only monomeric form of dyes in micelles. AO-SDS system showed greater aggregating and less dissolving properties, and weaker effect of salt than MB-SDS system did. These were attributed to the greater hydrophobic nature of the former dye. The monomer/dimer ratios of dyes in mixed micelles at given [SDS] were greatest at $20^{\circ}C$, reflecting the dependency of CMC of the surfactant on temperature.