• Title/Summary/Keyword: dissolution temperature

Search Result 414, Processing Time 0.027 seconds

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting (Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성)

  • Joowon Suh;Sangyeob Lim;Hyung-Ha Jin;Young-Bum Chun;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Metamorphic P-T Paths from Devonian Pelitic Schists from the Pelham Dome, Massachusetts, USA (뉴잉글랜드 펠암돔 주변부 데본기 변성 이질암의 변성 온도-압력 경로)

  • 김형수
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.211-237
    • /
    • 2000
  • Major element zoning has been analyzed in garnet porphroblasts obtained from the Grt-St and Ky-Grt-St grade assemblages in Zones I on the northern flank of the Pelham Dome, north central Massachusetts. These porphyroblasts grew during multiple phases of deformation and meta-morphism revealed by the inclusion trail geometry plus the chemical zoning patterns within garnet porphyroblasts. Unusual zoning patterns, including zoning reversals and gradient changes in XMn, zlgzag patterns in Fe/(Fe +Mg) and staircase-shaped patterns in XCa, are coincident with textural truncations and other changes in microstructure within the garnet porphrublasts. Chemical variations in plagioclase, biotite, muscovite and staurolite combined with inclusion trail geometry and petrography reveal that the garnet zoning patterns are modified by combinations of the following. (1) Uni-and divariant reactions involving garnet consumption(Grt+ Chl+Ms=St+Bt+Qtz + $H_2$O) and production(St+Ms + Qtz= Bt+ Grt +A1$_2$$SiO_{5}$ + $H_2$O). (2) Deformation induced episudic ionit dissolution, preferential diffusion and re-distribution during foliation development. (3) P-T changes during growth of the porphyroblasts. The P-T paths combined with petrographic and inclusion trail morphology observations consist of two pattens; (1) heating/compression during NW-SE shortening; and (2) decompression with cooling during NNW-SSE shortening. Based on temperature-time(T-t) geochronological data and late-Paleozoic tectonic model, Alleghanian metamorphism, which is the result of heterogeneous shearing concentrated along the boundary between the Abalone Terrane(Pelham dome) and cover rocks(Bronson Hill Terrane), has produced Ky-St-Ms mineral assemblage during Pennsylvanian(290-300 Ma) in Shutesbury area. However, temperature of alleghanian metamorphism was not high enough to form garnet and staurolite in the Northfiled syncline area. Alleghanian metamorphism has affected only the matrix due to heterogeneous shearing in the study area.

  • PDF

Quality Properties of Enteric-Coated Soft Capsule Using PEG as a Plasticizer (PEG를 가소제로 사용한 장용성 연질캡슐의 코팅 품질 특성)

  • Yang, Joo Hwan;Han, Joon Taek;Oh, In Ho;Park, Geum Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.260-267
    • /
    • 2015
  • We investigated the applicability of polyethylene glycol (PEG) as a plasticizer in enteric-coated soft capsules based on determination of quality characteristics according to molecular weight and concentration of enteric-coating PEG solution. There was no difference according to molecular weight of PEG, whereas a low PEG concentration in the enteric-coating solution was associated with higher whiteness index and slower disintegration time in pH 6.8 media. Brittleness was observed in the coating film at seam areas in 5% PEG enteric-coating solution after 2 weeks of storage at room temperature. The enteric-coating properties of PEG were compared with those of acetylated monoglyceride (AMG) and triacetin, which are enteric-coating plasticizers. Enteric-coated soft capsule containing PEG as a plasticizer showed a lower whiteness index and faster dissolution profile than AMG and triacetin. Moreover, enteric-coated soft capsule containing AMG and triacetin as plasticizers showed coating film brittleness at seam areas after 2 months of accelerated storage [$40^{\circ}C$, relative humidity (RH) 75%] but no difference at room temperature storage ($25^{\circ}C$, RH 60%). The present study suggests that concentration of PEG is important to determine enteric-coating quality, regardless of the molecular weight of PEG. In conclusion, PEG has potential as a plasticizer due to its transparency and storage stability in enteric-coated soft capsules.

Complexation of Progesterone with Cyclodextrins and Design of Aqueous Parenteral Formulations (프로게스테론과 시클로덱스트린류 간의 복합체 형성 및 수성 주사제 설계)

  • Choi, Hee-Jeong;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • The purpose of this study is to investigate the interaction of progesterone with various cyclodextrins (CDs) in the aqueous solution and in solid state, and finally to formulate a parenteral aqueous formulation. CDs used were ${\alpha}-$, ${\beta}-$, and ${\gamma}-CD$, $2-hydroxypropyl-{\beta}-CD$ (HPCD), sulfobutyl $ether-{\beta}-CD$ (SBCD), $dimethyl-{\beta}-CD$ (DMCD) and $trimethyl-{\beta}-CD$ (TMCD). The solubility studies of progesterone were performed in the presence of various CDs as a function of concentration or temperature. The solubility of progesterone increased in the rank order of ${\alpha}-CD$ < ${\beta}-CD$ < ${\gamma}-CD$ < TMCD$ < HPCD < DMCD < SBCD. Addition of SBCD (200 mg/ml) in water increased the aqueous solubility $(9.36\;{\mu}g/ml)$ about 3,200 times, and lowering the temperature facilitated the solubilization of progesterone. However, the addition of HPCD and SBCD in 20:80 (v/v) polyethylene glycol 300-water and propylene glycol-water cosolvents markedly decreased the solubility of progesterone, compared with solubilizing effects in water. Physical mixtures and solid dispersions of progesterone with HPCD or SBCD were prepared, and evaluated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), near IR spectroscopy and dissolution studies. By DSC and IR studies, it was found that progesterone was dispersed in HPCD in monotectic state and dissolved rapidly from both solid dispersions. Based on solubility studies, new aqueous progesterone fonnulations (5 mg/ml) containing SBCD (200 mg/ml) could be prepared and did not form precipitates even after 2 months at $4^{\circ}C$. The solution was transparent when mixed with normal saline and 5% dextrose injection at 1: 1, 1:10 and 1:20 (v/v) even after 7 days. Permeation rates of progesterone through a cellulose membrane from 20% PEG 300 solution $(50\;{\mu}g/ml)$ containing HPCD or SBCD were compared with oily formulation. Permeation of progesterone from oily formulation did not occur up to 8 hr, but aqueous formulations showed fast permeation rates from early stage of permeation study. The addition of HPCD or SBCD retarded the permeation rates of progesterone with the increase of CD concentrations, suggesting the possibility of a controlled absorption from the site administered intramuscularly. These results demonstrate that it is feasible to develop a new progesterone parenteral aqueous injection (5 mg/ml) using SBCD.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Study on the Selection of Solvent for Purificatino of p-Dioxanone by Crystallization Method (결정화에 의한 파라디옥산온의 정제를 위한 용매선정에 관한 연구)

  • kim, Sung-Il;Koh, Joo-young;Kim, Chul-Ung;Koh, Jae-Cheon;Park, So-Jin;Seo, Young-Jong;Choi, Byung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.581-587
    • /
    • 2005
  • In order to obtain a highly purified p-dioxanone (PDX) as monomer of biodegradable polymer, suitable solvent must be selected. The selection was based on the solubility of impurities, and partial layer melt crystallization were carried out under the presence of solvent. The solubility of PDX in various solvents such as ethyl acetate, tetrahydrofuran, acetone, alcohols (methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol) were measured over the temperature range of $-10{\sim}15^{\circ}C$. As solubility parameters, the mixing and dissolution enthalpy between the PDX and the solvents was studied based on empirical equations and the regular solution theory. The solubility and the temperature dependency of the solubility with the solvents of acetone, ethylacetate, and tetrahydrofuran of PDX were shown to have relatively high values compared to the alcohol type solvents. Also, in same alcohols, the smaller molecules and higher polarity gave higher solvency. In partial layer melt crystallization, small amount of ethylacetate selectively dissolved impurities and gave highly purified p-dioxanone, over 99.9% purity.

Effects of steeping condition and salinity stress on quality properties in germinated black soybean (발아시 수침 및 염 스트레스에 따른 발아 검정콩의 품질특성)

  • Yoon, Sung-Ran;Bae, Su-Gon;Kwon, Oh-Heun;Kang, Dong-Kyoon;Choe, So-Young;Ryu, Jung-A;Choi, Seong-Yong
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.500-505
    • /
    • 2014
  • This study investigated the effects of the steeping condition and salinity stress on the quality properties of germinated black soybean. The absorbed water content increased drastically in six hours with the increase in the steeping time and the temperature. The pH decreased as the steeping temperature increased. A gradual increase in the dissolution of the anthocyanin was observed with the steeping time. The adequate steeping conditions were found to have been six hours at $25^{\circ}C$, which showed the needed absorbed water content within a short time. The germination percentage of the black soybeans decreased with the increase in the NaCl concentration. The pinitol and total phenolics contents showed the highest values under the concentrations of 0.7% and 0.3-0.5% NaCl, respectively. The flavonoid content was highest at the 0.1% NaCl concentration. Consequently, the salinity stress during the germination of the black soybeans enhanced the pinitol content and lowered the blood sugar, which gives it an advantage as a functional food material.

Synthesis of Precipitated Calcium carbonate in Ca(OH)2-CO2-H2O System by the Continuous Drop Method of Ca(OH)2 Slurry

  • Ahn, Ji-Whan;Lee, Jae-Sung;Joo, Sung-Min;Kim, Hyung-Seok;Kim, Jong-Kuk;Han, Choon;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.327-335
    • /
    • 2002
  • Experiments were conducted to investigate the synthesis characteristics of Precipitated Calcium Carbonate(for short PCC) in Ca(OH)$_2-CO_2-H_2O$ system by the continuous drop method of Ca(OH)$_2$ slurry into the solution containing $CO_2$(aq). When the flow rate of $CO_2$(g) increases and the concentration of Ca(OH)$_2$ slurry become low, the absorption rate of $CO_2$(g) become faster than the dissolution rate of Ca(OH)$_2$. Consequently, the growth of the calcite crystal plane is facilitated resulting in synthesis of $1.0{\mu}m$ of rhombohedral calcite. On the other hand, when the flow rate of $CO_2$(g) decreases and the concentration of Ca(OH)$_2-CO_2-H_2O$ slurry become high, new nuclei is created along with the crystal growth resulting in synthesis of $0.1{\mu}m$ of prismatic calcite. Maintaining 1.0wt% of Ca(OH)$_2-CO_2-H_2O$ slurry, 120 drops/min of drop rate and $25^{circ}C$ of temperature, the shape of PCC shows colloidal and spherical agglomerate at 100 mL/min of the flow rate of $CO_2$(g); the mixture of rhombohedral and plate-shaped calcite, at 200∼500 mL/min. Therefore, as the flow rate of $CO_2$(g) increases, the shape of PCC changes from colloidal and rhombohedral calcite to plate-shaped calcite. Maintaining 500 mL/min of the flow rate of $CO_2$(g), 120 drops/min of the drop rate of Ca(OH)$_2$ slurry, and $25^{circ}C$ of temperature, the shape of PCC shows the plate-shaped calcite at 1.0∼3.0 wt% of Ca(OH)$_2$ slurry; the hexagonal plate-shape calcite of the thickness of $0.1{\mu}m$ and the width of $1.0{\mu}m$, at 4.0 wt%.

Cation Exchange Capacities, Swelling, and Solubility of Clay Minerals in Acidic Solutions : A Literature Review

  • Park, Won Choon
    • Economic and Environmental Geology
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 1979
  • A literature review is made on the physical and chemical characteristics of clay minerals in acidic solutions from the mineralogical and hydrometallurgical viewpoints. Some of the important characteristics of clays are their ability to cation exchange, swelling, and incongruent dissolution in acidic solutions. Various clay minerals can take up metallic ions from solution via cation exchange mechanism. Generally, cation exchange capacity increases in the following order : kaolinite, halloysite, illite, vermiculite, and montmorillonite. In acidic solutions, the cation uptake such as copper by clay minerals is strongly inhibited by hydrogen and aluminum ions and thus is not economically significant factor for recovery of metals such as uranium and copper. In acidic solutions, the cation uptake is substial. Swelling is minimal at lower pH, possibly due to lattice collapse. Swelling may be controllable with montmorillonite type clays by exchanging interlayer sodium with lithium and/or hydroxylated aluminum species. The effect of add on clay minerals are : 1. Division of aggregates into smaller plates with increase in surface area and porosity. 2. Clay-acid reactions occur in the following order: (i) $H^+$ replacement of interlayer cations, (ii) removal of octahedral cations, such as Al, Fe, and Mg, and (iii) removal of tetrahedral Al ions. Acid attack initiates, around the edges of the clay particles and continued inward, leaving hydrated silica gel residue around the edges. 3. Reaction rates of (ii) and (iii) are pseudo-1st order and proportional to acid concentration. Rate doubles for every temperature increment of $10^{\circ}C$. Implications in in-situ leaching of copper or uranium with acid are : 1. Over the life span of the operation for a year or more, clays attacked by acid will leave silica gel. If such gel covers the surface of valuable mineral surfaces being leached, recovery could be substantially delayed. 2. For a copper deposit containing 0.5% each of clay minerals and recoverable copper, the added cost due to clay-acid reaction is about 1.5c/lb of copper (or 0.93 lbs of $H_2SO_4/1b$ of copper). This acid consumption by clay may be a factor for economic evaluation of in-situ leaching of an oxide copper deposit.

  • PDF