• Title/Summary/Keyword: dissolution

Search Result 2,195, Processing Time 0.025 seconds

Studies on the Dissolution Rate of Prednisolone Powder and Tablets (Prednisolone분미(粉未) 및 Prednisolone정제(錠劑)의 용출속도(溶出速度)에 관한 연구(硏究))

  • Shin, Im-Sick;Yong, Jae-Ick
    • Journal of Pharmaceutical Investigation
    • /
    • v.4 no.4
    • /
    • pp.26-37
    • /
    • 1974
  • Having measured physical canstant and dissolution rate of prednisolone powder, and tablets, also particle size, particle number of powder disintegration, hardness, friability of prednisolone tablets and having also compared it's interrelationship. We obtained the results as following. 1) Dissolution rate of prednisolone powder was determinded cube root rule and: the slope $({\alpha})$ was $3.1915{\times}10^{-2}$. 2) The tablet used in this study was fourteen kind of prednisolone tablets, two kinds of which were not conformity with prednisolone dissolution rate test of U.S.P. XVIII, but the rest of them were conformity with the same test (t60% was 4.3minute in average) 3) There was no significant interrelationship between disintegration, hardness, friability and dissolution rate of prednisolone tablet used in this study but we recognized the disintegration time was greatly influenced by the dissolution rate.

  • PDF

Enhancement of Dissolution Properties of Poorly Soluble Drugs (V)-Enhanced Dissolution of Furosemide by Cogrinding or Coprecipitating with Povidone- (난용성 약물의 용출 증가(제5보)-포비돈과의 혼합분쇄 또는 공침에 의한 푸로세미드의 용출 증대-)

  • Shin, Sang-Chul;Oh, In-Joon;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.4
    • /
    • pp.193-198
    • /
    • 1990
  • To increase the dissolution rate of furosemide, cogrinding or coprecipitating of furosemide with povidone was carried out. The ground mixture of furosemide with povidone was prepared by cogrinding in a ceramic ball mill and the coprecipitate was prepared by solvent method using methanol. The povidone ground mixture and the coprecipitate showed a faster and more enhanced dissolution rate than the physical mixture or intact furosemide. The IR, DTA and TGA studies showed the physicochemical modifications of furosemide from the ground mixture and the coprecipitate. An interaction, in the ground mixture and in the coprecipitate, such as association between the functional groups of furosemide and povidone might occur in the molecular level. The coprecipitating and cogrinding techniques with povidone provided a promising way to increase the dissolution rate of poorly soluble drugs.

  • PDF

Dissolution Behavior of Plagioclase in HCl and KOH Solutions (염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동)

  • 현성필;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF

Dissolution Characteristics of Biphenyl Dimethyl Dicarboxylate from Solid Dispersions and Permeation through Rabbit Deuodenal Mucosa (고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 특성 및 토끼의 십이지장 점막 투과)

  • Hyun, Jean;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • To increase the dissolution rate of practically insoluble biphenyl dimethyl dicarboxylate (DDB), various solid dispersions were prepared with water soluble carriers, such as povidone (PVP K-30), poloxamer 407, sodium deoxycholate (SDC) and polyethylene glycol (PEG) 6000, at drug to carrier ratios of 1:3, 1:5 and 1:10 (w/w) by solvent or fusion method. Dissolution test was performed by the paddle method. The dissolution rate of DDB tablets (25 mg) on market was found to be very low (11.44, 9.02 and 6.42% at pH 1.2, 4.0 and 6.5 after 120 min, respectively). However, dissolution rates of DDB from various solid dispersions were very fast and reached supersaturation within 10 min. DDB-PEG 6000 solid dispersion appeared to be better in enhancing the in vitro dissolution rate than others. Furthermore, the incorporation of DDB and phosphatidylcholine (PC) into ${\beta}-cyclodextrin$ at ratios of 1:2:20, 1:5:20 and 1:10:20 resulted in a 4.9-, 11.2- and 19.6-fold increase in DDB dissolution after 120 min as compared with the pure drug, respectively. This might be attributed to the formation of lipid vesicles which entrapped a certain concentration of DDB during dissolution. On the other hand, the permeation of DDB through rabbit duodenal mucosa was examined using some enhancers such as SDC, sod. glycocholate (SGC) and glycyrrhizic acid ammonium salt (GAA). Only trace amounts of DDB were found to permeate through deuodenal mucosa in the absence of enhancer. SDC was found to markedly decrease the permeation flux of DDB, however, SGC and GAA (5 mM) enhanced the flux of DDB 1.6 and 2.4 times higher as compared with no additive, respectively.

  • PDF

Retarded Dissolution of Ibuprofen in Gelatin Microcapsule by Cross-Linking with Glutaradehyde

  • Yong, Chul-Soon;Li, Dong-Xun;Oh, Dong-Hoon;Kim, Jung-Ae;Yoo, Bong-Kyu;Woo, Jong-Soo;Rhee, Jong-Dal;Choi, Han-Gon
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.520-524
    • /
    • 2006
  • Ibuprofen-loaded gelatin microcapsule, a solid form of microcapsules simultaneously containing ethanol and ibuprofen in water-soluble gelatin shell was previously reported to improve the dissolution of drug. In this study, to retard the initial high dissolution of ibuprofen from gelatin microcapsule, the ibuprofen-loaded cross-linked gelatin microcapsule was prepared by treating an ibuprofen-loaded gelatin microcapsule with glutaraldehyde and its dissolution was evaluated compared to ibuprofen powder and gelatin microcapsule. The ibuprofen-loaded crosslinked microcapsule treated with glutaraldehyde for 10 and 60 sec gave significantly higher dissolution rates than did ibuprofen powder. Furthermore, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 10 sec was similar to that from gelatin microcapsule. However, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 60 sec decreased significantly compared to gelatin microcapsule, suggesting that the treatment of gelatin microcapsule with glutaraldehyde for 60 sec could cross-link the gelatin microcapsule. Furthermore, the cross-linking of gelatin microcapsule markedly retarded the release rate of ibuprofen in pH 1.2 simulated gastric fluid compared to gelatin microcapsule. However, the cross-linking of gelatin microcapsule with glutaraldehyde hardly changed the size of gelatin microcapsules, ethanol and ibuprofen contents encapsulated in gelatin microcapsule. Thus, the ibuprofen-loaded cross-linked gelatin microcapsule could retard the initial high dissolution of poorly water-soluble ibuprofen.

A clean technology development using the molybdenum dissolution reaction with hydrogen peroxide(II) (과산화수소를 이용한 몰리브덴(Mo) 용해반응에 따른 청정기술 개발에 관한 연구(II))

  • 김재우;홍종순;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.116-122
    • /
    • 1999
  • The purpose of this study is to develop new process named "hydrogen peroxide dissolution method". This process used hydrogen peroxide, which is harmless to human body and oxidize molybdenum wire selectively.The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of molybdenum wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved molybdenum. This study was aimed at gathering the basic data of molybdenum wire dissolution-recovery process and proposes the reaction condition of molybdenum wire dissolution-recovery process and the factors influencing those reactions. The results were as follows:1. In the dissolution of molybdenum wire, the early condition of reaction was $15^{\circ}C$, and the temperature condition of state was $32^{\circ}C$. 2. 1) In the GSL-60W type, P.W.(Piece weight) was 11.89mg, C.R. was $65.6\Omega$. 2) In the FL-20W type, P.W. was 11.60mg, C.R. was $4.6\Omega$. 3. The molybdenum of process water was treated of a precipitation after dry and after stagnation in the one day, the molybdenum of upper water was treated of precipitation after dry and after congelation.

  • PDF

Dissolution and Stability Enhancements of Trimethoprim by ${\beta}-Cyclodextrin$ Polymer Inclusion Complexation (트리메토프림과 ${\beta}$-시클로덱스트린 고분자 간의 포접복합체 형성에 의한 용출 및 안정성 향상)

  • Kim, Hyung-Tae;Park, Kyung-Ock;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.105-113
    • /
    • 1992
  • To improve the solubility and dissolution rate of trimethoprim (TMP), which is slightly soluble drug, its inclusion complexes were prepared and studied in this experiment. Inclusion complexes of TMP with ${\beta}-cyclodextrin$ and ${\beta}-cyclodextrin$ polymer (CDPS) were prepared according to Fenyvesi method. These were compared with TMP and its physical mixture with CDPS. Water, diluted hydrochloric acid and phosphate buffer solution were used as dissolution media. And accelerated stability test was studied at $50,\;70\;and \;80^{\circ}C$. It was found that solubility and dissolution rate of inclusion complexes were increased in water. Especially, the solubility and dissolution rate of TMP was found to be markedly increased by inclusion complexation with CDPS. In stability test, ${\beta}-cyclodextrin$ inclusion complexes were more or less stable than TMP alone. This tendency was not led in CDPS. Consequently, CDPS was useful in increasing dissolution rate and stability of TMP.

  • PDF

Homogenization Analysis of Problems related to Quartz Dissolution and Hydroxide Diffusion (석영광물의 용해 및 수산화 이온의 확산에 관한 균질화해석)

  • Choi, Jung-Hae;Ichikawa, Yasuaki
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.271-279
    • /
    • 2010
  • Time-dependent behavior similar to secondary deformation related to mineral dissolution is easily observed when performing a laboratory pressure experiment. In this research, to observe the dissolution of quartz found in bentonite used as buffer material for the geological disposal of high-level waste (HLW) under conditions of high pH, we calculated the diffusion of $OH^-$ ions and the behavior of quartz dissolution using the homogenization analysis method. The results reveal that the rate of quartz dissolution is proportional to the temperature and interlayer water thickness. In particular, in a high-pH environment, the reacted area (and therefore the dissolution rate) increases with decreasing interlayer water thickness.

Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel (Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동)

  • Kim, Hong-Ki;Na, Hye-Sung;Lee, Sang-Hoon;Kang, Chung-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.

Studies on Dissolution Rate of Drugs (XV) Dissolution Characteristics of Ibuprofen Dispersed in Sodium Deoxycholate (의약품의 용출에 관한 연구(제15보) 데옥시콜린산나트륨에 분산된 이부프로펜의 용출 특성)

  • Park, Tea-Am;Seo, Seong-Hoon;Kim, Soo-Uck
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • Coprecipitates of ibuprofen (IPF)-sodium deoxycholate (DC-Na) were prepared at various mixing ratios of IPF to DC-Na. X-ray diffraction measurments indicated that IPF in 1:3 and 1:5 IPF-DC-Na coprecipitate did not exist in the crystal form, however in the 1:8 coprecipitate, IPF remained its crystalline form. The dissolution rate was tested in pH 7.4 phosphate buffer by the paddle method of dissolution test of KP V. The dissolution rates of IPF from 1:1, 1:3, 1:5, 1:8 and 1:10(w/w) IPF-DC-Na coprecipitates and physical mixtures were compared with that of IPF alone. It was found that the dissolution rate of 1:5(w/w) coprecipitate was greater than that of pure IPF, coprecipitate and physical mixture at any other ratios of the two components. The concentration of IPF released from the IPF-DC-Na coprecipitates reached a plateau within 10 min, and thereafter gradually decreased indicating that IPF released from the coprecipitate was recrystallized due to the transient supersaturation.

  • PDF