• Title/Summary/Keyword: dissipative devices

Search Result 27, Processing Time 0.02 seconds

A New High Efficiency PWM Single-Switch Isolated Converter

  • Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.289-292
    • /
    • 2007
  • The flyback converter is one of the most attractive isolated converters in small power applications because of its simple structure. However, it suffers from high device stress, large transformer size, and high voltage stress across switch and diode. To solve these problems a new cost-effective PWM single-switch isolated converter is proposed. The proposed converter has no output filter inductor, reduced voltage stress on the secondary devices, and reduced transformer size. Moreover, the switch turnoff loss is reduced and no dissipative snubber across the secondary diode is required. Therefore, it features a simple structure, low cost, and high efficiency. The operational principle and characteristics of proposed converter are presented compared with flyback converter and verified experimentally.

  • PDF

Experimental study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures (건물의 내진보강을 위한 캔틸레버타입 강재댐퍼의 실험)

  • Ahn, Tae-Sang;Kim, Young-Ju;Park, Jin-Hwa;Kim, Hyung-Geun;Jang, Dong-Woon;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • The use of seismic energy-dissipative devices for passive control is increasing exponentially in the recent years for both new and existing buildings. Use of these devices started in and has been somewhat limited to developed countries. One of the current challenges is to promote the use of seismic dampers in earthquake-prone developing countries by lowering the cost of the devices. This paper proposed a new type of seismic damper based on yielding of a cantilever type metallic element for seismic retrofit of existing and new building structures. The hysteretic behavior and energy dissipation capacity of the proposed damper was investigated using component tests under cyclic loads. The experimental results indicated that the damping device had stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load-displacement curve of the seismic damper was proposed.

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels

  • Lago, Bruno Dal
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.81-95
    • /
    • 2019
  • The unexpected seismic interaction of dry-assembled precast concrete frame structures typical of the European heritage with their precast cladding panels brought to extensive failures of the panels during recent earthquakes due to the inadequateness of their connection systems. Following this recognition, an experimental campaign of cyclic and pseudo-dynamic tests has been performed at ELSA laboratory of the Joint Research Centre of the European Commission on a full-scale prototype of precast structure with vertical and horizontal cladding panels within the framework of the Safecladding project. The panels were connected to the frame structure by means of innovative arrangements of fastening systems including isostatic, integrated and dissipative. Many of the investigated configurations involved a strong frame-cladding interaction, modifying the structural behaviour of the frame turning it into highly non-linear since small deformation. In such cases, properly modelling the connections becomes fundamental in the framework of a design by non-linear dynamic analysis. This paper presents the peculiarities of the numerical models of precast frame structures equipped with the various cladding connection systems which have been set to predict and simulate the experimental results from pseudo-dynamic tests. The comparison allows to validate the structural models and to derive recommendations for a proper modelling of the different types of existing and innovative cladding connection systems.

Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams

  • Colajanni, Piero;Pagnotta, Salvatore
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.231-248
    • /
    • 2022
  • Hybrid Steel-Trussed Concrete Beam (HSTCB) is structural typology suitable for light industrialization. HSTCBs usually cover long span with small depths, which lead to significant amount of longitudinal rebars. The latter make beam-column joints more prone to damage due to earthquake-induced cyclic actions. This phenomenon can be avoided using friction-based BCCs. Friction devices at Beam-to-Column Connections (BCCs) have become promising solutions to reduce the damage experienced by structural members during severe earthquakes. Few solutions have been developed for cast-in-place Reinforced Concrete (RC) and steel-concrete composite Moment Resisting Frames (MRFs), because of the difficulty of designing cost-effective damage-proof connections. This paper proposes a friction-based BCC for RC MRFs made with HSTCBs. Firstly, the proposed connection is described, and its innovative characteristics are emphasized. Secondly, the design method of the connection is outlined. A detailed 3D FE model representative of a beam-column joint fitted with the proposed connection is developed. Several monotonic and cyclic analyses are performed, investigating different design moment values. Lastly, the numerical results are discussed, which demonstrate the efficiency of the proposed solution in preventing damage to RC members, and in ensuring satisfactory dissipative capacity.

Mitigating Seismic Response of RC Framed Apartment Building Using Isotropic Hysteretic Steel Dampers (등방성 이력형 강재댐퍼를 이용한 RC 라멘조 아파트건물의 지진응답 개선)

  • Chun, Young-Soo;Bang, Jong-Dae
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Passive energy dissipation systems for seismic applications have been under development for a number of years with a rapid increase in implementations starting in the mid-1990s in many countries. A metallic hysteretic damper has most commonly been used for seismic protection of structures in domestic area because they present high energy-dissipation potential at relatively low cost and easy to install and maintain. This paper presents an analytical case study of the effectiveness of isotropic hysteretic metallic damper(IHMD) called Kagome as a passive dissipative device in reducing structural response during seismic excitation. An eighteen-story RC framed apartment building is studied with and without IHMD. Results demonstrate the feasibility of these techniques for seismic mitigation. The inclusion of supplemental passive energy dissipation devices in the form of IHMD proved to be a very effective method for significantly reducing the seismic response of the building investigated.

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.