• 제목/요약/키워드: disproportionation reaction

Search Result 39, Processing Time 0.125 seconds

Disproportionation/Dehydrocoupling of Endocrine Disruptor, Tributyltin Hydride to Polystannanes Using Cp2TiCl2/N-Selectride (Cp' = Cp' = C5H5, Cp; Me-C5H4, Me-Cp; Me5C5, Cp*) Catalyst

  • Park, Jaeyoung;Kim, Seongsim;Lee, Beomgi;Cheong, Hyeonsook;Lee, Ki Bok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.34-38
    • /
    • 2013
  • Tributyltin hydride ($n-Bu_3SnH$), an endocrine disruptor, was slowly polymerized by the group 4 ${Cp^{\prime}}_2TiCl_2/N$-selectride (Cp' = $C_5H_5$, Cp; $Me-C_5H_4$, Me-Cp; $Me_5C_5$, $Cp^*$) catalyst combination to give two phases of products: one is an insoluble cross-linked solid, polystannane in 3-25% yield as minor product via disproportionation/dehydrocoupling combination process, and the other is an oil, hexabutyldistannane in 65-90% yield as major product via simple dehydrocoupling process. Disproportionation/dehydrocoupling process first produced a low-molecular-weight oligostannane possessing partial backbone Sn-H bonds which then underwent an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane. The disproportionation/dehydrocoupling of a tertiary hydrostannane mediated by early transition metallocene/inorganic hydride is quite unusual and applicable.

Comparison of Catalyzing Properties of Bacterial 4-α-Glucanotransferases Focusing on Their Cyclizing Activity

  • Kim, Jung-Eun;Tran, Phuong Lan;Ko, Jae-Min;Kim, Sa-Rang;Kim, Jae-Han;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.43-50
    • /
    • 2021
  • A newly cloned 4-α-glucanotransferase (αGT) from Deinococcus geothermalis and two typical bacterial αGTs from Thermus scotoductus and Escherichia coli (MalQ) were investigated. Among 4 types of catalysis, the cyclization activity of αGTs that produces cycloamylose (CA), a valuable carbohydrate making inclusion complexes, was intensively studied. The new αGT, DgαGT, showed close protein sequence to the αGT from T. scotoductus (TsαGT). MalQ was clearly separated from the other two αGTs in the phylogenetic and the conserved regions analyses. The reaction velocities of disproportionation, cyclization, coupling, and hydrolysis of three αGTs were determined. Intriguingly, MalQ exhibited more than 100-fold lower cyclization activity than the others. To lesser extent, the disproportionation activity of MalQ was relatively low. DgαGT and TsαGT showed similar kinetics results, but TsαGT had nearly 10-fold lower hydrolysis activity than DgαGT. Due to the very low cyclizing activity of MalQ, DgαGT and TsαGT were selected for further analyses. When amylose was treated with DgαGT or TsαGT, CA with a broad DP range was generated immediately. The DP distribution of CA had a bimodal shape (DP 7 and 27 as peaks) for the both enzymes, but larger DPs of CA quickly decreased in the DgαGT. Cyclomaltopentaose, a rare cyclic sugar, was produced at early reaction stage and accumulated as the reactions went on in the both enzymes, but the increase was more profound in the TsαGT. Taken together, we clearly demonstrated the catalytic differences between αGT groups from thermophilic and pathogenic bacteria that and showed that αGTs play different roles depending on their lifestyle.

Lewis Acid Degradation Characteristics of Perfluoropolyethers Derivatives (퍼프로로폴리에테르 유도체의 루이스 산 분해특성)

  • Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.650-655
    • /
    • 2014
  • The degradation characteristics of perfluoropolyether (PFPE) derivatives currently being used as computer hard disk lubricants have been investigated. Especially, we considered the effects of end group on degradation behavior of PFPE derivatives. It was found that the degradation of PFPE derivatives in the presence of $Al_2O_3$ involves two degradation mechanisms such as thermal degradation and Lewis acid disproportionation by $AlF_3$ which was mainly formed by oxide-to-halide reaction between $Al_2O_3$ and the degraded PFPE. The end groups were strongly related to Lewis acid disproportionation of PFPE derivatives, and it is due to the difference of electron donating ability in the each end groups. Even if PFPE derivatives have same repeating unit in the main chain, Lewis acid disproportionation was prohibited by higher electron donating ability by the end group which caused the high electron density at the acetal group in the repeating unit.

Transglycosylation Reaction and Raw Starch Hydrolysis by Novel Carbohydrolase from Lipomyces starkeyi

  • Lee, Jin-Ha;Lee, Sun-Ok;Lee, Gwang-Ok;Seo, Eun-Seong;Chang, Suk-Sang;Yoo, Sun-Kyun;Kim, Do-Won;Donal F. Day;Kim, Doman
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.106-111
    • /
    • 2003
  • A novel carbohydrolase, which is a DXAMase, containing both dextranase and amylase equivalent activities, was purified from Lipomyces starkeyi KSM22. The purified DXAMase was also found to hydrolyze cellobiose, gentiobiose, trehalose and melezitose, while disproportionation reactions were exhibited with various di- and tri-saccharides, such as maltose, isomaltose, gentiobiose, kojibiose, sophorose, panose, maltotriose, and isomaltotriose with various kinds of oligosaccharides produced as acceptor reaction products. Furthermore, the purified DXAMase hydrolyzed raw waxy rice Starch and produced maltodextrin to the extent of 50% as a glucose equivalent.

Selective Disproportionation of Toluene over Various Cation-exchanged ZSM-5 Catalysts (양이온 교환된 ZSM-5 촉매상에서 톨루엔의 선택적인 반응)

  • Jong Shin Yoo;Byoung Joon Ahn;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.127-132
    • /
    • 1983
  • The catalytic activity of ZSM-5 catalyst for the disproportionation of toluene is dependent on the type of cation exchanged, the degree of ion-exchange and the reaction temperature. The activity increases in the order of alkaline-, alkali earth-, hydrogen, and rare-earth-exchanged ZSM-5 and decreases with increasing degree of cation exchange. Among the ion-exchanged ZSM-5 catalyst, only Cs-ZSM-5 shows predominant selectivity for p-xylene. The selectivity increases with increasing degree of $Cs^+$-exchange and decreasing reaction temperature. This phenomenon is interpreted in terms of shape selectivity arising from the partial blocking of channel intersections by large cesium ions.

  • PDF

Analysis of Oxidation-reduction Equilibria in Aqueous Solution Through Frost Diagram (Frost도를 이용한 수용액의 산화-환원반응 평형 해석)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.3-8
    • /
    • 2017
  • Oxidation-reduction reaction is one of the most important reactions occurring in the aqueous phase. Analysis of the equilibria related to these oxidation-reduction reactions is of great value in designing many unit operations in hydrometallurgy, such as leaching, separation and electrochemical reactions. The construction of Frost diagram was discussed in this work. The conditions at which disproportionation and proportionation reactions can occur were explained by analyzing Frost diagram together with Latimer table. The information which can be obtained from Frost diagram was discussed.

Catalytic Dehydropolymerization of Di-n-butylstannane n-$Bu_2SnH_2$ by Group 4 and 6 Transition Metal Complexes

  • 우희권;박종목;송선정;양수연;김익식;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1291-1295
    • /
    • 1997
  • The catalytic dehydrocoupling of di-n-butylstannane n-Bu2SnH2 by the Cp2MCl2/Red-Al (M = Ti, Zr, Hf) and M(CO)6/Red-Al in situ combination catalysts yielded a mixture of two kinds of catenated products: one is a cross-linked insoluble solid, and the other is a non-cross-linked soluble solid (≒Sn5) or viscous oil (≒Sn2). The soluble oligostannanes could be produced by simple dehydrocoupling of n-Bu2SnH2, whereas the insoluble polystannanes could be obtained via disproportionation/dehydrocoupling combination process of n-Bu2SnH2. The disproportionation/dehydrocoupling combination process may initially produce a low-molecular-weight oligostannane with partial backbone Sn-H bonds which could then undergo an extensive cross-linking reaction of backbone Sn-H bonds, resulting in the formation of an insoluble polystannane.

Adsorption and Chemical Reaction of Cu(hfac)(vtms) on Clean and Modified Cu(111) Surface

  • Chung, Young-Su;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.139-139
    • /
    • 2000
  • We have investigated the adsorption and reaction of Cu(hfac)(vtms) on Cu(111) surface using TPD. The recombinative desorption of Cu(hfac)(vtms) reversibly occurs between 240 and 340K. The remaining Cu(hfac) after the desorption of vtms preferentially undergo the desorption between 330 and 370K as intact Cu(hfac) than the disproportionation reaction. The disprportionation reaction between adsorbed Cu(hfac) was observed to occur between 420 and 520K with an activation energy of 34~37 kcal/mol. the geometries and adsorption sites of Cu(hfac) have been also calculated by means of extended H ckel method. It is found that standing Cu(hfac) is more stable than lying-down Cu(hfac) on the Cu(111) surface and the Cu(hfac) molecule prefers to adsorb on the hollow site over the top or bridge sites. We also have investigated the surface modification effect by preadsorbed I and Na atoms on the reaction Cu(hfac)(vtms).

  • PDF

Purification and Characterization Sucrose phosohorylase in Leuconostoc mesenteroides NRRL B-1149 (Leuconostoc mesenteroides NRRL B-1149의 Sucrose phosohorylase의 분리와 특성 연구)

  • Lee Jin Ha;Park Jun Seong;Park Hyen Joung;Cho Jae Young;Choi Jeong Sik;Kim Do Man
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • Leuconostoc mesenteroides NRRL B-1149 produces various glucoseyltransferases for the synthesis of dextran, levan and glucose-1-phosphate using sucrose as a substrate. A sucrose phosphorylase (1149SPase) was purified from L. mesenteroides NRRL B-1149 culture by using hollow fiber filtration (30 kDa cut off), Toyopearl DEAE 650 M column chromatography and following two times of DEAE-Sepharose column chromatographies. The specific activity of the purified 1149SPase was 25.7 (U/mg) with $16\%$ yield. The 1149SPase showed a molecular size of 56 kDa on denatured $10\%$ SDS-PAGE. The N-terminal amino acid sequence of the enzyme was MEIQNKAM. The optimum pH and temperature of this enzyme were 6.2~6.5 and 37^{circ}C, respectively. It had an apparent K_{m} of 6.0 mM and K_{cat} of 1.62/s for sucrose. 1149SPase crystal was formed by hanging drop diffusion technique using 20 mM calcium chloride dihydrate, 100 mM sodium acetate trihydrate pH 4.6 and $30\%$ 2-methyl-2,4-pentanediol as vaporizing and reservation solution. The 1149SPase catalyzes transferring of glucose from isomaltose or sucrose to salicin and salicyl alcohol by disproportionation reaction or acceptor reaction and synthesized two acceptor products, respectively.

Reactions of m-Xylene over Mordenite Catalysts (모더나이트 촉매에서의 m-크실렌의 반응)

  • C. H. Yune;B. J. Ahn;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.26-29
    • /
    • 1981
  • Reactions of m-xylene were studied in a fixed-bed type micropulse reactor over cation-exchanged dealuminated mordenite and zeolite Y catalysts. Over H-mordenite catalysts higher catalyst pretreatment temperature as well as dealumination resulted in the increase of the formation of disproportionation product. $Ba^{2+}- and Mg^{2+}-$exchanged mordenite catalysts showed the shape selectivity in the disproportionation reaction of m-xylene, that is, the formation of trimethylbenzene decreasing sharply as the degree of cation exchange increased.

  • PDF