• Title/Summary/Keyword: display driving

Search Result 755, Processing Time 0.032 seconds

Fabrication of High Performance Plastic MIM-LCDs

  • Jeong, Jong-Han;Woo, Sung-Il;Kwon, Soon-Bum;Kim, Han-Sik;Nam, Hyun-Chul;Hur, Ji-Ho;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.223-226
    • /
    • 2003
  • We have developed flexible MIM LCDs by using plastic film substrate. MIM array and cells were fabricated with low temperature process and material technology. As an insulator of MIM, SiNx was introduced at the low temperature allowable for plastic substrate. The fabricated MIM devices show high electrical performance for LC driving. We discuss its process and characteristics.

  • PDF

Power consumption of a Quick-Response Liquid Powder Display ($QR-LPD^{(R)}$)

  • Hattori, Reiji;Masuda, Yoshitomo;Nihei, Norio;Sakurai, Ryo;Yamada, Shuhei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.845-849
    • /
    • 2005
  • Quick-Response Liquid Powder Display ($QR-LPD^{(R)}$) is a promising device for ultra-low-power applications. Several driving methods for this display were investigated in terms of image quality and power consumption. The power consumed both in a panel and in the output circuits of driver LSIs was evaluated by analog circuit simulation and discussed.

  • PDF

Design of the Tapped-Inductor Boost Converter for LED Backlights Driving (탭인덕터 부스트 컨버터를 이용한 LED-드라이버 설계)

  • Jeong, JeeWook;Park, DongSeo;Lee, HyoGil;Park, SinKyun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.177-179
    • /
    • 2013
  • This paper presents an LED driver which requires a high voltage gain (5-6 times). To achieve a high voltage gain, the tapped-inductor boost converter topology was used and through the analysis of converter's steady-state and its dynamic characteristics, the product design's reliability and validity were verified.

  • PDF

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Fabrication of simple bi-layered structure red and green PHOLEDs

  • Jeon, Woo-Sik;Park, Tae-Jin;Kwon, Jang-Hyuk;Pode, Ramchandra;Ahn, Jeung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.34-36
    • /
    • 2008
  • Highly efficient red and green phosphorescent devices comprising a simple bilayer structure are reported. The driving voltage to reach $1000\;cd/m^2$ is 4.5 V in $Bebq_2:\;Ir(piq)_3$ red phosphorescent device. Current and power efficiency values of 9.66 cd/A and 6.90 lm/W in this bi-layered simple structure PHOLEDs are obtained, respectively. While in $Bepp_2:Ir(ppy)_3$ green phosphorescent device, the operating voltage value of 3.3V and current and power efficiencies of 37.89 cd/A and 35.02 lm/W to obtain a luminance of $1000\;cd/m^2$ are noticed, respectively.

  • PDF

New Electrochromic Materials and Prevention of Cross-talk in Passive Matrix Electrochromic Display

  • Noh, Chang-Ho;Jang, Jae-Eun;Jung, Jae-Eun;Lee, Ji-Min;Jeon, Seog-Jin;Das, Rupasree Ragini;Han, Jai-Yong;Kim, Jong-Min;Son, Seung-Uk;Park, So-Youn;Moustafa, Walid S.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.891-894
    • /
    • 2008
  • Here we describe the new structured electrochromic(EC) materials to improve the three primary colors (RGB). We also report the simply isolated electrochromic unit cell using gel type electrolyte and show cross-talk' free driving of EC display device.

  • PDF

High Speed Driving Technique in AC PDPs

  • Shin, Bhum-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1181-1184
    • /
    • 2007
  • The new self-priming addressing driving scheme was proposed to improve an address discharge time lag. It utilizes the priming effect maintaining the priming ramp discharge during an address period and the address discharge time lag is significantly improved. In this study, the basic characteristics of the priming ramp discharge are presented.

  • PDF

Stability of Hydrogenated Amorphous Silicon TFT Driver

  • Bae, Byung-Seong;Choi, Jae-Won;Oh, Jae-Hwan;Kim, Kyu-Man;Jang, Jin
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Gate and data drivers are essential for driving active matrix display. In this study, we integrate drivers with a-Si:H to develop a compact, better reliability and cost effective display. We design and fabricate drivers with conventional a-Si:H thin film transistors (TFTs). The output voltages are investigated according to the input voltage, temperature and operation time. Based on these studies, we propose here a new driver to prevent gate line from the floated state. For the external coupled voltage fluctuation, the proposed driver shows better stability.

Backplane Technologies for Flexible Display (플렉시블 디스플레이 백플레인 기술)

  • Lee, Yong Uk
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Display is a key component in electronic devices. OLED is growing very fast recently due to the explosion of the smart phone market although still LCD is the dominating display technology in the display market at the moment. Also needs for the large area and high resolution TVs and flexible displays are increasing these days. Especially flexible display is expected to be one of the key technologies in mobile devices requiring small device size and large display size. Contrary to the conventional displays, flexible display requires organic materials for the substrate, the active driving element and also for the display element. Plastic film as a substrate, organic semiconductor as an active component of the transistor and organic light emitting materials or electronic paper as a display element are studied actively. In this article, mainly backplane technologies such as substrates and the transistor materials for flexible display will be introduced.