• Title/Summary/Keyword: display driving

Search Result 755, Processing Time 0.027 seconds

A New Structure and Driving Scheme of PDP for High Luminous Efficacy

  • Yi, Jeong-Doo;Kim, Joon-Yeon;Chae, Su-Yong;Kim, Tae-Woo;Cho, Sung-Chun;Chun, Byoung-Min;Kim, Jeong-Nam;Cho, Yoon-Hyoung
    • Journal of Information Display
    • /
    • v.5 no.2
    • /
    • pp.10-13
    • /
    • 2004
  • We have developed a new PDP cell structure called MARI(Multi Anode for Reduction of Ionic effect) and new driving scheme achieving a high luminous efficacy. The MARI PDP has middle electrode inserted between X and Y main electrodes. In the MARI PDP, reset and scan voltage is applied to middle electrode and sustain voltage is applied to X and Y electrode. Using a long gap sustain discharge we accomplished a high luminous efficacy. And we developed 42"full panel adopting MARI structure and new driving scheme and attained luminous efficacy of 2.35 lm/W.

A Research of a Traffic Light Signal Classification Model using YOLOv5 for Autonomous Driving (자율주행을 위한 YOLOv5 기반 신호등의 신호 분류 모델 연구)

  • Joongjin Kook;Hakseung Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.61-64
    • /
    • 2024
  • As research on autonomous driving technology becomes more active, various studies on signal recognition of traffic lights are also being conducted. When recognizing traffic lights with different purposes and shapes, such as pedestrian traffic lights, vehicle-only traffic lights, and right-turn traffic lights, existing classification methods may cause misrecognition problems. Therefore, in this study, we studied a model that allows accurate signal recognition by subdividing the classification of signals according to the purpose and type of traffic lights. A signal recognition model was created by classifying traffic lights according to their shape and purpose into horizontal, vertical, right turn, etc., and by comparing them with the existing signal recognition model based on YOLOv5, it was confirmed that more correct and accurate recognition was possible.

  • PDF

Stability of Low Temperature a-Si:H TFT on Stainless Steel Substrate

  • Kim, Sung-Hwan;Kim, Sang-Soo;Park, Yong-In;Peak, Seung-Han;Lee, Kyoung-Mook;Park, Choon-Ho;Lim, Yu-Sok;Kim, Chang-Dong;Kang, In-Byeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.247-249
    • /
    • 2008
  • Low Temperature a-Si:H TFT on stainless steel substrate has been developed for the flexible electrophoretic display. Stability of low temperature a-Si:H TFT is more important point than its initial device characteristics. Thus, we have studied device characteristics of low temperature a-Si:H TFT in terms of stability for driving electrophoretic display.

  • PDF

The Control of Electrostatic Characteristics in Toner Type Paper-like Display

  • Lee, Sung-Guk;Kwon, Soon-Hyung;Cho, Won-Ki;Song, Moon-Bong;Kim, Young-Woon
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The toner type paper-like display (PLD) has been developed with two polymer particles having opposite polarity composed of polymer, colorant and external additives (nano-sized silica). Nano-sized silica with triboelectric charge was used for the charge control agent (CCA) and influenced on the electrostatic properties of the silica-coated polymer particles. The surface morphology and the cohesiveness of silica-coated polymer particles were changed with the silica coating time. From these results, it was verified that the PLD cell using silica-coated particles (200 seconds) shows a good white appearance and low driving voltage.

A study of characteristics for Image sticking in AC - Plasma Display Panel

  • Han, Yong-gyu;Lee, S.B.;Jeong, S.H.;Son, C.G.;Yoo, N.L.;Lee, H.J.;Lim, J.E.;Lee, J.H.;Jeoung, J.M.;Ko, B.D.;Oh, P.Y.;Moon, M.W.;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.263-265
    • /
    • 2005
  • In the alternative current plasma display panel(AC-PDP) technology, it is very important to remove the image sticking for improving an image quality. In this paper, we have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. We have investigated the driving method of alternative current plasma display panel(AC-PDP) for preventing image sticking. The preventing method of image sticking was proposed by adopting the Sticking Remove Pulse(SRP). The variation of brightness is most affected by the MgO to be formed at the surface of the phosphor layer. As a result, the image sticking is reduced when the driving method adopted an SRP.

  • PDF

Analysis on the Discharge Characteristics of AC Plasma Display Panel with Counter Sustain Electrodes (교류형 플라즈마 표시기의 신 대향형 구조에 대한 방전 특성 분석)

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1579-1583
    • /
    • 2008
  • We proposed the new structure of ac plasma display panel(PDP) to improve the luminous efficacy and driving voltage characteristics. Through two-dimensional numerical simulations, we analyzed the effects of new counter discharge type, which consists of counter sustain electrodes and auxiliary electrodes. Generally, an advantage of AC PDP with the counter sustain electrodes has been known for the driving characteristics of the low voltage. In this work, the new counter structure using the ignition discharge by the auxiliary pulse applied to the address electrode showed the result of the increased luminous efficacy. The short gap discharge between two auxiliary electrodes on the front plate could intensity the long gap discharge between counter electrodes. The reliability of simulation result could be confirmed by the experimental result in the test panel.

Single Color Realization and Driving Method of Three-Electrode Type Reflective Display (3전극형 반사형 디스플레이의 단일컬러 구현 및 구동방법)

  • Lee, Sang-Il;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • We realize a color reflective display without any color filter and sub-pixelation concept, by which the full or single color realization is basically impossible. In this study, we use a 3-electrode on the lower substrate with indium tin oxide (ITO) glass. The width of a rib is $30{\mu}m$, a cell size is $150{\mu}m{\times}150{\mu}m$, and the space of lower electrodes is $10{\mu}m$. To get the single color, we drive this panel by a identical algorithm based on the movement of charged particle in color fluid within a cell with hermetic seal. According to the driving method, the lifetime of panel is different.

A Low-Power Two-Line Inversion Method for Driving LCD Panels

  • Choi, Sung-Pil;Kwon, Kee-Won;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • A new two-line based inversion driving method is introduced for low power display-driver ICs. By inserting a timing offset between the chopper stabilization and the alternation of LCD polarity, we can reduce power consumption without noticeable degradation in the display quality. By applying the proposed scheme to 12" LCD applications, we achieved 7.5% and 27% power saving in the display-driver IC with white and black patterns, respectively.

On The Development of the Color Sequential LCD

  • Liu, Chia-Lin;Okita, Masaya;Huang, Chi-Fang;Mo, Chi-Neng;Tai, Wen-Chih;Chen, Kuang-Lang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1172-1174
    • /
    • 2009
  • Color sequential display is a well know technology. Hower, due to the slow response time of LC,the CSD has not been used in LCD. We have developed a unique LC color display, which can improve LC response time, improve the driving system, improve the gamma drive issue and increase the color gamut to more than NTSC120%.It also can get very low power consumption merit.

  • PDF

Series Resonant Type Sustain Driver for PDP Driving (PDP 구동을 위한 직렬공진형 서스테인 드라이버)

  • Kang, Feel-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents a new sustain driver employing energy recovery function to minimize power losses transpired during the operation of plasma display panel. The proposed circuit uses the resonance between the equivalent capacitance of panel and an external inductor to provide/recover energy to/from the panel. The proposed circuit can save the system cost compared with the conventional one, and has high-performance in energy recovery. To verify the validity of the proposed circuit, we implemented experiments based on 7.5 inch AC-PDP.