• Title/Summary/Keyword: display controller

Search Result 334, Processing Time 0.046 seconds

Network Type Distributed Control with Multi-Backup Function Controller (다중 백업 기능 제어기를 갖는 네트워크형 분산 제어)

  • Choi, Goon Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2014
  • Stable running is a very important factor when we are building a control system. But, sometimes malfunction of the system controller is caused by several reasons. To solve these problems, some systems have prepared a backup controller. In the generality of cases, making a backup controller is no easy work. Especially, it becomes more difficult when many backup controllers have to be embodied in one system. In this paper, the multi-backup function controller which was implemented in the form of the network type distributed control system will be suggested. Also, using Arago Disk System that has a structure for inner loop control, the validity of the proposed methods will be verified.

Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor (선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계)

  • Kim, Kyong-Chon;Kim, Jung-Jae;Choi, Young-Man;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

Design of an One-Chip Controller for an Electronic Dispenser (전자 디스펜서용 단일 칩 제어기 설계)

  • Kim, Tae-Sang;Won, Young-Wook;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • This paper presents an one-chip controller for an electronic dispenser. The electronic dispenser is composed of electronic part and mechanical part. The electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for the electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device . The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864AP1 for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of the biomedical device through the one-chip controller for the electronic dispenser.

  • PDF

A Study on the PID Control Gain Selection Scheme of a High-Speed/High-Accuracy position Control System using Taguchi Method (다구찌 방법을 이용한 고속/정밀 위치제어시스템의 PID 제어게인 선정에 관한 연구)

  • 신호준;채호철;한창수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For modeling elements, the system is divided into electrical part, magnetic part, and mechanical part. Each part is modeled using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to obtain the more robust PID gain combinations than conventional one. This study makes use of an L18 array with three parameters varied on three levels. Results of simulations and experimental show that the designed PID controller provides a improved ratio of signal to noise and a reduced sensitivity improved to the conventional PID controller.

  • PDF

Development of Wide-Range Brightness Controller of LED Backlight for Avionic Displays (항공기 디스플레이용 LED 백라이트의 광대역 휘도 제어기 개발)

  • Lim, Soo-Hyun;Lim, Jeong-Gyu;Chung, Se-Kyo;Shin, Hwi-Beom;Shin, Min-Jae;Sohn, Seung-Gul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.287-294
    • /
    • 2008
  • This paper describes an implementation of a wide-range dimming controller of a LED backlight for Avionics applications such as a control display unit(CDU) and multi-function display(MFD). The digital dimming controller employing a current controlled buck converter and light sensor feedback is proposed. The proposed system provides a wide dimming control range of from 150fL to 0.05fL(3000:1) required for avionic displays. The experimental results are provided to show the control performance.

High Speed Controller for Haptic System (촉각장치 구동용 고속제어기)

  • 김동옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.61-65
    • /
    • 2000
  • In this paper We have developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology which can calculate the real position and transmit the force data to device rapidly. The haptic system is composed of 6DOF force display device high-speed controller. The developed system will be used on constructing the dynamical virtual environment. To show the efficiency of our system we designed simulation program of force-reflecting. As the result of the experiment we found that the controller has much higher resolution than some other controller It is so efficient in a 1 PC-based system with 1[kHz] haptic interrupt cycle.

  • PDF

AMBA-based LCD controller design and implementation (AMBA기반의 LCD 컨트롤러 설계)

  • Hong Jae-In;Cho Tae-Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.179-187
    • /
    • 2004
  • In this paper, we have designed an LCD controller based on AMBA. Normally display systems using the LCD are adopted independent bus architecture for high speed data access. Proposed LCD controller complies with AMBA data format and has an image scaler that executes interpolation for full screen display. This image scaler employs FOI for horizontal scaling and H-Shape pseudomedian filter for vertical scaling. It has been designed with VHDL and verified on prototype board using Xilinx FPGA and LCD panel.

  • PDF

An experimental study of the time based mass flow controller for semiconductor industry (반도체용 시간식 질량유량계의 특성에 관한 연구)

  • Chang, Young-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.55-58
    • /
    • 2008
  • The objective of the research is to design, manufacture and test a Mass Flow Controller(MFC) capable of measuring compressible fluid flows based on a "bucket and stop-watch"method. The basic principle is the measurement of time, where the time taken to fill and empty a bucket of known volume is measured. This method of flow measurement is a new concept when compared to a commercilized current mass flow controller. For the flow meter to be able to compete with established designs it not only must be comparable in cost and robustness, it must be very accurate and reliable as well. This device should be able to handle fluid flows in the range of 0.1ml/min to 10ml/min within an accuracy of ${\pm}$1%. A possible application for a device such as this is in electronics industry where arsenic gas is used in the production of silicon chips.

  • PDF

Determining of the Sampling Time and Adjusting PID Coefficients in a Discrete System (이산 시스템에서 샘플링 시간의 설정 및 PID 계수 조정)

  • Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.46-51
    • /
    • 2017
  • Recent controller design techniques often discretize the target system and implement a discrete controller that is digitized to match the target system. When constructing such a discrete system, it is necessary to first determine the sampling time. The smaller the sampling time is, the more advantageous it can be made similar to the original system, but the cost is a problem when realizing such a configuration as hardware. On the other hand, the longer the time, the more different the system is from the original system, and eventually the control becomes impossible. In this paper, we consider the above problem and propose a more logical approach to determine the sampling time in the discrete system and investigate the relation with the differential controller. We also apply this process to a nonlinear system called ARAGO disc and verify its validity through computer simulation.

  • PDF

Dual Controller Structure for Single Plant Control Using the Distributed Control System (분산 제어 시스템을 이용한 단일 플랜트 제어용 이중 제어기 구조)

  • Goon-Ho Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.148-153
    • /
    • 2023
  • A digital controller uses a microprocessor and is a controller implemented as a program. This method has the advantage of being more maintenance-friendly than existing analog controllers. However, it inevitably requires computation time to execute the internal program. Therefore, the digital controller uses a method of controlling the system at a certain cycle by considering this time, and this cycle is very closely related to the performance of the microprocessor used. In other words, in the case of very high performance, this control cycle can be shortened to near real time, but this may result in a disadvantage in terms of cost. In this paper, we propose a method to solve this problem by implementing two processors with slightly lower performance in a control system in a series-parallel structure. For this purpose, we will use a digital distributed control system and implement an experimental system to examine its effectiveness.

  • PDF