• Title/Summary/Keyword: displacement-based seismic design

Search Result 306, Processing Time 0.025 seconds

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

Development of Computational Tools for Seismic Design of Architectural Components in Negative Pressure Isolation Wards (음압격리병동의 건축 비구조요소 내진설계를 위한 전산도구 개발)

  • Chu, Yu Rim;Kim, Tae Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2022
  • Recently, an unprecedented emerging infectious disease has rapidly spread, causing a global shortage of wards. Although various temporary beds have appeared, the supply of wards specializing in infectious diseases is required. Negative pressure isolation wards should maintain their function even after an earthquake. However, the current seismic design standards do not guarantee the negative pressure isolation wards' operational (OP) performance level. For this reason, some are not included in the design target even though they are non-structural elements that require seismic design. Also, the details of non-structural elements are usually determined during the construction phase. It is often necessary to complete the stability review and reinforcement design for non-structural elements within a short period. Against this background, enhanced performance objectives were set to guarantee the OP non-structural performance level, and a computerized tool was developed to quickly perform the seismic design of non-structural elements in the negative pressure isolation wards. This study created a spreadsheet-based computer tool that reflects the components, installation spacing, and design procedures of non-structural elements. Seismic performance review and design of the example non-structural elements were conducted using the computerized tool. The strength of some components was not sufficient, and it was reinforced. As a result, the time and effort required for strength evaluation, displacement evaluation, and reinforcement design were reduced through computerized tools.

Seismic Performance of High-rise Concrete Buildings in Chile

  • Lagos, Rene;Kupfer, Marianne;Lindenberg, Jorge;Bonelli, Patricio;Saragoni, Rodolfo;Guendelman, Tomas;Massone, Leonardo;Boroschek, Ruben;Yanez, Fernando
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.181-194
    • /
    • 2012
  • Chile is characterized by the largest seismicity in the world which produces strong earthquakes every $83{\pm}9years$ in the Central part of Chile, where it is located Santiago, the capital of Chile. The short interval between large earthquakes magnitude 8.5 has conditioned the Chilean seismic design practice to achieve almost operational performance level, despite the fact that the Chilean Code declares a scope of life safe performance level. Several Indexes have been widely used throughout the years in Chile to evaluate the structural characteristics of concrete buildings, with the intent to find a correlation between general structural conception and successful seismic performance. The Indexes presented are related only to global response of buildings under earthquake loads and not to the behavior or design of individual elements. A correlation between displacement demand and seismic structural damage is presented, using the index $H_o/T$ and the concrete compressive strain ${\varepsilon}_c$. Also the Chilean seismic design codes pre and post 2010 Maule earthquake are reviewed and the practice in seismic design vs Performance Based Design is presented. Performance Based Design procedures are not included in the Chilean seismic design code for buildings, nevertheless the earthquake experience has shown that the response of the Chilean buildings has been close to operational. This can be attributed to the fact that the drift of most engineered buildings designed in accordance with the Chilean practice falls below 0.5%. It is also known by experience that for frequent and even occasional earthquakes, buildings responded elastically and thus with "fully operational" performance. Taking the above into account, it can be said that, although the "basic objective" of the Chilean code is similar to the SEAOC VISION2000 criteria, the actual performance for normal buildings is closer to the "Essential/Hazardous objective".

A multimodal adaptive evolution of the N1 method for assessment and design of r.c. framed structures

  • Lenza, Pietro;Ghersi, Aurelio;Marino, Edoardo M.;Pellecchia, Marcello
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.271-284
    • /
    • 2017
  • This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with inplan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Probabilistic Seismic Safety Assessment of PSC Containment Building Considering Nonlinear Material Properties (재료비선형 특성을 고려한 PSC 격납건물의 확률론적 내진안전성 평가)

  • Ahn, Seong-Moon;Choi, In-Kil;Chun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.597-604
    • /
    • 2006
  • The seismic safety of the prestressed concrete containment building was evaluated by the seismic fragility analysis based on the nonlinear dynamic time-history analyses. Four kinds of earthquake ground motions were used for the seismic fragility analysis of the containment building to consider the potential earthquake hazard. The conventional seismic fragility analysis of the safety related structures in nuclear pouter plant have been performed by using the linear elastic analysis results for the seismic design. In this study, the displacement based seismic fragility analysis method was proposed.

  • PDF

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Experimental and analytical study of a new seismic isolation device under a column

  • Benshuai Liang;Guangtai Zhang;Mingyang Wang;Jinpeng Zhang;Jianhu Wang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.415-428
    • /
    • 2023
  • Low-cost techniques with seismic isolation performance and excellent resilience need to be explored in the case of rural low-rise buildings because of the limited buying power of rural residents. As an inexpensive and eco-friendly isolation bearing, scrap tire pads (STPs) have the issue of poor resilience. Thus, a seismic isolation system under a column (SISC) integrated with STP needs to be designed for the seismic protection of low-rise rural buildings. The SISC, which is based on a simple exterior design, maintains excellent seismic performance, while the mechanical behavior of the internal STP provides elastic resilience. The horizontal behaviors of the SISC are studied through load tests, and its mechanical properties and the intrinsic mechanism of the reset ability are discussed. Results indicate that the average residual displacement ratio was 24.59%, and the reset capability was enhanced. Comparative experimental and finite element analysis results also show that the load-displacement relationship of the SISC was essentially consistent. The dynamic characteristics of isolated and fixed-base buildings were compared by numerical assessment of the response control effects, and the SISC was found to have great seismic isolation performance. SISC can be used as a low-cost base isolation device for rural buildings in developing countries.