• Title/Summary/Keyword: displacement of structure

Search Result 2,266, Processing Time 0.029 seconds

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

Investigation Into Optimal Installation Position of TMD for Efficient Seismic Response Reduction of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 효율적인 지진응답제어를 위한 TMD의 최적 설치 위치 분석)

  • Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, TMD(Tuned Mass Damper) is installed in a retractable-roof spatial structure in order to investigate dynamic response characteristics according to mass ratio and installed position of TMD on large spatial structures. The example analytical model is generated based on the Singapore sports hub stadium. Twenty eight analytical models are used to investigate optimal installation position of TMD for the example retractable-roof spatial structure using 4 to 16 TMDs. The mass of one TMD is set up 1% of total mass at the example analytical model. Displacement response ratio of model with TMD is compared with that of base model without TMD. It has been found from numerical simulation that it is more effective to install TMD at the edge of the spatial structure rather than to concentrate the TMD at the center of the spatial structure.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle

  • Sharmin, Faria;Hussan, Mosaruf;Kim, Dookie;Cho, Sung Gook
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • Displacement response and corresponding maximum response energy of structures are key parameters to assess the dynamic effect or even more destructive structural damage of the structures. By employing them, this research has compared the structural responses of jacket supported offshore wind turbine (OWT) subjected to seismic excitations apprehending earthquake incidence, when (a) soil-structure interaction (SSI) has been ignored and (b) SSI has been considered. The effect of earthquakes under arbitrary angle of excitation on the OWT has been investigated by means of the energy based wavelet transformation method. Displacement based fragility analysis is then utilized to convey the probability of exceedance of the OWT at different soil site conditions. The results show that the uncertainty arises due to multi-component seismic excitations along with the diminution trend of shear wave velocity of soil and it tends to reduce the efficiency of the OWT to stand against the ground motions.

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

Advanced aerostatic stability analysis of suspension bridges

  • Xiao, Ru-Cheng;Cheng, Jin
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2004
  • Aerostatic instability of a suspension bridge may suddenly appears when the deformed shape of the structure produces an increase in the value of the three components of displacement-dependent wind loads distributed in the structure. This paper investigates the aerostatic stability of suspension bridges using an advanced nonlinear method based on the concept of limit point instability. Particular attention is devoted to aerostatic stability analysis of symmetrical suspension bridges. A long-span symmetrical suspension bridge (Hu Men Bridge) with a main span of 888 m is chosen for analysis. It is found that the initial configuration (symmetry or asymmetry) may affect the instability configuration of structure. A finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges (NASAB) is presented and discussed. The aerostatic failure mechanism of suspension bridges is also explained by tracing aerostatic instability path.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

Measurement of Dynamic Deformation for Structure Using Linear Scan Sensor (Linear Scan Sensor를 활용한 구조물 동적 변위 측정)

  • 김감래;김명배;곽강율;김주용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.39-42
    • /
    • 2003
  • In order to Impose an effective check on the existing methode of measurement, this study make an attempt to attach sensor on a structure, which can perceive a laser beam sent out from a light source at any place. This system makes it possible to measure an absolute of dynamic displacement according to accurately survey an amount of fluctuation in process of time. This result of experiment to compare the products by means of each method was satisfactory for identification. Accordingly these facts attest to the possibility of accurate measurement owing to gauge an dynamic displacement amount of structure.

  • PDF

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.