• 제목/요약/키워드: displacement formulation

검색결과 446건 처리시간 0.027초

변위구속조건을 고려한 컴플라이언트 메커니즘 설계 (Compliant Mechanism Design with Displacement Constraint)

  • 김영기;민승재
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1779-1786
    • /
    • 2002
  • When the topology optimization is applied to the design of compliant mechanism, unexpected displacements of input and output port are generated since the displacement control is not included in the formulation. To devise a more precise mechanism, displacement constraint is formulated using the mutual potential energy concept and added to multi-objective function defined with flexibility and stiffness of a structure. The optimization problem is resolved by using Finite Element Method(FEM) and Sequential Linear Programming(SLP). Design examples of compliant mechanism with displacement constraint are presented to validate the proposed design method.

Easy function for solving linear elasticity problems

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.335-348
    • /
    • 2022
  • It is well known that after finding the displacement in the structural mechanics, strain and stress can be obtained in the straight-forward process. The main purpose of this paper is to unify the displacement functions for solving the solid body. By performing mathematical operations, three sets of these key relationships are found in this paper. All of them are written in the Cartesian Coordinates and in terms of a simple function. Both analytical and numerical approaches are utilized to validate the correctness of the presented formulations. Since all required conditions for the bodies with self-equilibrated loadings are satisfied accurately, the authors' relations can solve these kinds of problems. This fact is studied in-depth by solving some numerical examples. It is found that a very simple function can be used for each formulation instead of ten different and complex displacement potentials defined by previous studies.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis

  • Lei, Weidong;Liu, Chun;Qin, Xiaofei;Chen, Rui
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.317-326
    • /
    • 2018
  • The iterative decomposition coupling formulation of the precise integration finite element method (FEM) and the time domain boundary element method (TD-BEM) is presented for elstodynamic problems. In the formulation, the FEM node and the BEM node are not required to be coincident on the common interface between FEM and BEM sub-domains, therefore, the FEM and BEM are independently discretized. The force and displacement converting matrices are used to transfer data between FEM and BEM nodes on the common interface between the FEM and BEM sub-domains, to renew the nodal variables in the process of the iterations for the un-coincident FEM node and BEM node. The iterative coupling formulation for elastodynamics in current paper is of high modeling accuracy, due to the semi-analytical solution incorporated in the precise integration finite element method. The decomposition coupling formulation for elastodynamics is verified by examples of a cantilever bar under a Heaviside-type force and a harmonic load.

Thermal post-buckling analysis of uniform slender functionally graded material beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.545-560
    • /
    • 2010
  • Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

구조체의 위상학적 최적화를 위한 비선형 프로그래밍 (A Nonlinear Programming Formulation for the Topological Structural Optimization)

  • 박재형;이리형
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.169-177
    • /
    • 1996
  • 구조물에 있어서 위상학적 최적화 문제는 최적화를 구하는 과정에서 구조체가 변화함으로 인한 어려움 때문에 최적화 분야에서 가장 어려운 문제로 간주되어 왔다. 종래의 방법으로는 일반적으로 구조요소 사이즈가 영으로 접근할 때 강성 매트릭스의 singularity를 발생시킴으로써 최적의 해를 얻지 못하고 도중에 계산이 종료되어 버린다. 본 연구에 있어서는 이러한 문제점들을 해결하기 위한 비선형 프로그래밍 formulation을 제안하는 것을 목적으로 한다. 이 formulation의 주된 특성은 요소 사이즈가 영이 되는 것을 허용한다. 평형방정식을 등제약조건으로 간주함으로써 강성 매트릭스의 singularity를 피할 수 있다. 이 formulation을 하중을 받는 구조물에 있어서 응력과 변위의 제약조건하에서 중량을 최소화할때의 유한요소의 두께를 구하는 디자인 문제에 적용하여, 이 formulation이 위상학적 최적화에 있어서의 효과를 입증하였다.

  • PDF

시간영역 변위근사 유한차분법의 자유면 경계조건 (Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method)

  • 민동주;유해수
    • 지구물리와물리탐사
    • /
    • 제6권2호
    • /
    • pp.77-86
    • /
    • 2003
  • 자유면 경계조건을 정착하게 묘사할 수 있는 변위근사 유한차분법을 이용하는 시간영역 탄성파 모델링법을 고안하였다. 기존의 변위근사 유한차분법의 경우 변위와 매질의 물성을 격자점에 정의하는 격자군(격자점 기반의 격자군)을 이용하였으나, 이 연구에서 제시하는 새로운 유한차분법에서는 변위는 격자점에 정의하지만 매질의 물성을 격자점으로 둘러싸인 면에 정의하는 격자군(셀 기반의 격자군)을 이용한다. 매질의 물성을 셀에 정의할 경우 자유면에서 응력이 사라진다는 자유면 경계조건을 추가로 적용할 필요가 없으며 매질의 물성 변화만으로 자유면 경계조건을 표현할 수 있다. 수치예를 통한 정확도 분석 결과 셀 기반의 격자군을 이용할 경우 계산된 수치석인 해가 해석적인 해에 매우 근사함을 알 수 있었다.

A numerical model for masonry implemented in the framework of a discrete formulation

  • Nappi, A.;Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.171-184
    • /
    • 2001
  • A direct discrete formulation suitable for the nonlinear analysis of masonry structures is presented. The numerical approach requires a pair of dual meshes, one for describing displacement fields, one for imposing equilibrium. Forces and displacements are directly used (instead of having to resort to a model derived from a set of differential equations). Associated and nonassociated flow laws are dealt with within a complementarity framework. The main features of the method and of the relevant computer code are discussed. Numerical examples are presented, showing that the numerical approach is able to describe plastic strains, damage effects and crack patterns in masonry structures.

Advanced 1D Structural Models for Flutter Analysis of Lifting Surfaces

  • Petrolo, Marco
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.199-209
    • /
    • 2012
  • An advanced aeroelastic formulation for flutter analyses is presented in this paper. Refined 1D structural models were coupled with the doublet lattice method, and the g-method was used for flutter analyses. Structural models were developed in the framework of the Carrera Unified Formulation (CUF). Higher-order 1D structural models were obtained by using Taylor-like expansions of the cross-section displacement field of the structure. The order (N) of the expansion was considered as a free parameter since it can be arbitrarily chosen as an input of the analysis. Convergence studies on the order of the structural model can be straightforwardly conducted in order to establish the proper 1D structural model for a given problem. Flutter analyses were conducted on several wing configurations and the results were compared to those from literature. Results show the enhanced capabilities of CUF 1D in dealing with the flutter analysis of typical wing structures with high accuracy and low computational costs.