• 제목/요약/키워드: displacement fields

검색결과 344건 처리시간 0.022초

개선된 탄소성 해석을 이용한 버팀지지 흙막이벽의 거동비교 (Comparison of Displacement of the Braced Retaining Wall by Developed Elasto-Plastic Analysis)

  • 신진환;김동신
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, when being constructed the large structures, the deep excavations have performed to utilize the underground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground is frequently occurred. the Analysis of the retaining structures is necessary to safety of the excavation works. There are many methods such as elasto-plastic theory, FEM, and FDM to analyze the displacement of the retaining structure. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement bye the Inclinometer. The monitored fields were three excavation work site in S-I, S-II, and S-III area. Excavation method of each site is braced retaining wall using H-pile. Excavation depth is 14m, 14m, and 8.2m.

IPS 흙막이 가시설의 수평 변위 계측을 통한 선행하중 효과 수치해석적 분석 (An Numerical Analysis of the Preloading Effect of IPS Retaining Wall through Earth Horizontal Displacement Measuring)

  • 이치호;이종휘;이창기;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권5호
    • /
    • pp.25-33
    • /
    • 2012
  • 본 연구에서는 흙막이 가시설 공법중 지반의 변위를 억제하고, 토공사 및 구조물 공사의 시공성을 크게 개선한 IPS 흙막이 가시설 공법을 시공한 현장의 계측자료를 바탕으로, 탄소성보법 수치해석 프로그램(EXCAV/W)을 이용하여 수치해석을 실시하였다. 그 결과, 선행하중을 가한 해석치가 평균 13.2% 감소하였으며, 또한 일반적인 해석치보다 현장 계측치는 평균 26.7% 감소하는 것으로 나타났다. 따라서 IPS 흙막이 가시설 공법은 기존 버팀보 공법에 흙막이벽의 수평변위에 대한 안전성을 확보하고 있음을 알 수 있다. 또한 IPS 흙막이 가시설 공법을 이용한 선행하중 효과를 통해 수평변위가 감소하는 것을 확인할 수 있다.

New nine-node Lagrangian quadrilateral plate element based on Mindlin-Reissner theory using IFM

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.;Ibrahim, Zainah
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.205-229
    • /
    • 2012
  • This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations ${\theta}_x$ and ${\theta}_y$ are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • 제8권2호
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

Stochastic analysis for uncertain deformation of foundations in permafrost regions

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Zhao, Xiaodong;Yin, Leijian
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.589-600
    • /
    • 2018
  • For foundations in permafrost regions, the displacement characteristics are uncertain because of the randomness of temperature characteristics and mechanical parameters, which make the structural system have an unexpected deviation and unpredictability. It will affect the safety of design and construction. In this paper, we consider the randomness of temperature characteristics and mechanical parameters. A stochastic analysis model for the uncertain displacement characteristic of foundations is presented, and the stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. The stochastic displacement fields of an embankment in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the deformation characteristics of foundations in permafrost regions, and it shows that the stochastic temperature has a different influence on the stochastic lateral displacement and vertical displacement. Construction disturbance and climate warming lead to three different stages for the mean settlement of characteristic points. For the stochastic settlement characteristic, the standard deviation increases with time, which imply that the results of conventional deterministic analysis may be far from the true value. These results can improve our understanding of the stochastic deformation fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론 (HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A.;Alashti, R. Akbari;Pashaei, M.H.
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.77-96
    • /
    • 2014
  • In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.

곡선보 요소의 고유치 해석에서 질량행렬의 영향 (The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements)

  • 유하상
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.