• Title/Summary/Keyword: displacement fields

Search Result 344, Processing Time 0.023 seconds

Static analysis of simply supported porous sandwich plates

  • Taskin, Vedat;Demirhan, Pinar Aydan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.549-557
    • /
    • 2021
  • In this study, it is aimed to analyze the bending of porous sandwich plates using the four-variable shear deformation theory. The core of the sandwich plate is assumed to be functionally graded, and face sheets are assumed to be isotropic. The pore distribution of the sandwich plate is considered even and uneven type of porosity distribution. Displacement fields are defined with four variable shear deformation theory. Equilibrium equations of porous sandwich plates are derived from virtual displacement principle. An analytical solution is obtained by Navier's approach. Results are presented for uniformly and sinusoidally distributed loaded porous sandwich plates. Face sheet -core thickness ratio, porosity distribution, amount of porosity is investigated.

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Earthquake induced structural pounding between adjacent buildings with unequal heights considering soil-structure interactions

  • Jingcai Zhang;Chunwei Zhang
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • The purpose of this paper is to investigate the coupled effect of SSI and pounding on dynamic responses of unequal height adjacent buildings with insufficiently separation distance subjected to seismic loading. Numerical investigations were conducted to evaluate effect of the pounding coupling SSI on a Reinforced Concrete Frame Structure system constructed on different soil fields. Adjacent buildings with unequal height, including a 9-storey and a 3-storey reinforced concrete structure, were considered in numerical studies. Pounding force response, time-history and root-mean-square (RMS) of displacement and acceleration with different types of soil and separations were presented. The numerical results indicate that insufficient separation could lead to collisions and generate severe pounding force which could result in acceleration and displacement amplifications. SSI has significant influence of the seismic response of the structures, and higher pounding force were induced by floors with stiffer soil. SSI is reasonable neglected for a structure with a dense soil foundation, whereas SSI should be taken into consideration for dynamic analysis, especially for soft soil base.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration field with Stereo-PIV/PLIF Technique (Stereo-PIV/LIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.365-370
    • /
    • 2004
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereo Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K${\times}$2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent flow around Rushton turbine were identified by the calculation of synchronized data of the velocity field and concentration field.

Measurement of Nonlinear Dielectric Constant (비선형 유전율의 측정)

  • Roh, I.S.;Kang, D.H.;Lee, S.U.;Heo, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1331-1333
    • /
    • 2001
  • In this study a measurement equipment was designed and made for the nonlinear dielectric constants in dielectrics. The determining method of the nonlinear dielectric constants also was proposed. The measurement equipment was consisted of the wave generation part, the high voltage amplifier part, the measurement part and the data acquisition part. In this equipment the measurement control and the data processing could be conducted by computer. In order to determine the nonlinear dielectric constants alternating sign-wave electric fields are applied to dielectrics with different magnitude and the waves of the electric fields and the response from dielectrics are stored in computer memories. The harmonics of dielectric displacement are obtained by the Fourier transformation of these waves. The nonlinear dielectric constants are determined at the relatively low-field region. The experiment for PZT ceramic samples was done by the equipment and the determining method and as the result meaningful data were obtained.

  • PDF

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

A COMPUTATIONAL STUDY OF ESTIMATING AERO-OPTIC BORESIGHT ERROR FOR A HYPERSONIC FLIGHT VEHICLE (극초음속 비행체의 공기광학 조준오차 예측을 위한 전산해석 연구)

  • Lim, Seol;Chae, Hoon;Kim, Jongju
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.99-104
    • /
    • 2015
  • Aero-optic phenomena cause the image position displacement on an imaging plane of the airborne optical/IR systems. Particularly, the aero-optic boresight error(BSE) is important factor for homing, positioning and aiming applications of hypersonic flight interceptor missile. In this paper, an estimating method of aero-optic BSE for a hypersonic flight vehicle is studied. A ray tracing method and a transform method of refractive index fields from flow density fields are combined with computational fluid dynamics(CFD) method.

Development of Diagnostic Expert System for Rotating Machinery with Journal Bearing-Research on the Diagnosis of the Nonlinear Characteristics of Rotor System (저어널 베어링으로 지지된 회전축의 이상상태 진단을 위한 진단 전문가 시스템의 개발-로타시스템의 비선형 특성 진단을 위한 연구)

  • 유송민;김영진;박상신
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.153-161
    • /
    • 2001
  • The development of techniques in diagnosing the state of the system is one of the essential tools in establishing the automation and unmanned manufacturing system for the realization of CIM/FMS in the fields. In this paper, we developed various diagnostic schemes for the journal bearing supported rotor system. Up to now, vibration of the shaft, measurement of the displacement and the temperature have been used for diagnostic tools, however, the statistical features only could not differentiate the state from states. Thus, we identified the sensor data f3r the steady state in the signal processing and then applied the fuzzy c-mean technology to cope with the nonlinear characteristics of the system. This will, in return, establish a possible diagnostic system for the rotor system in the fields.

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF