• Title/Summary/Keyword: displacement coefficient method

Search Result 221, Processing Time 0.023 seconds

Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves

  • Mazloom, Moosa;Pourhaji, Pardis;Shahveisi, Masoud;Jafari, Seyed Hassan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • In this research, the vulnerability of some reinforced concrete frames with different stories are studied based on the Park-Ang Damage Index. The damages of the frames are investigated under various earthquakes with nonlinear dynamic analysis in IDARC software. By examining the most important characteristics of earthquake parameters, the damage index and vulnerability of these frames are investigated in this software. The intensity of Erias, velocity spectral intensity (VSI) and peak ground velocity (PGV) had the highest correlation, and root mean square of displacement ($D_{rms}$) had the lowest correlation coefficient among the parameters. Then, the particle swarm optimization (PSO) algorithm was used, and the sinusoidal waves were equivalent to the used earthquakes according to the most influential parameters above. The damage index equivalent to these waves is estimated using nonlinear dynamics analysis. The comparison between the damages caused by earthquakes and equivalent sinusoidal waves is done too. The generations of sinusoidal waves equivalent to different earthquakes are generalized in some reinforced concrete frames. The equivalent sinusoidal wave method was exact enough because the greatest difference between the results of the main and artificial accelerator damage index was about 5 percent. Also sinusoidal waves were more consistent with the damage indices of the structures compared to the earthquake parameters.

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad;Amara, Khaled;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1287-1306
    • /
    • 2016
  • The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Reliability of Lateral Deviation Measurement in the Hyoid Bone With Center Point and Lateral Motion Tests

  • Min, Hye-jin;Yoon, Tae-lim
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.76-83
    • /
    • 2019
  • Background: The hyoid bone is the only non-jointed structure among the skeletal tissues of the head and neck region, and its movement and posture depend on the attached muscle, ligament, and fascia. The location of the hyoid bone is important for airway maintenance, vocalization, chewing, swallowing, breathing, and head and scapular position. In general, the location of the hyoid bone is measured using radiographs and 3D computed tomography, and no studies have reported on clinical measurement methods. Objects: This study was performed to suggest clinical measurement methods for lateral deviation of the hyoid bone and to evaluate their reliability. Methods: In this study, 24 healthy volunteers (12 males, 12 females) in Cheongju-si participated. Two examiners performed the center point test and lateral motion test twice each to measure the lateral displacement of the hyoid bone. The reliability of the center point test was analyzed using intra-class correlation coefficients (ICC), and the reliability of the lateral motion test was analyzed using Cohen's kappa coefficient. Results: The intra-rater reliability of the center point test was good, and the inter-rater reliability was moderate. The intra- and inter-rater reliability of the lateral motion test showed substantial reliability. Conclusion: Based on these results, the center point test and the lateral motion test can be used as an alternative methods of the measurement of lateral deviation of the hyoid bone for people who have musculoskeletal disorders of the head, neck, and scapula.

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

Wave propagation analysis of the ball in the handball's game

  • Yongyong Wang;Qixia Jia;Tingting Deng;Mostafa Habibi;Sanaa Al-Kikani;H. Elhosiny Ali
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.729-742
    • /
    • 2023
  • It is a recent attraction to the mechanical scientists to investigate state of wave propagation, buckling and vibration in the sport balls to observe the importance of different parameters on the performance of the players and the quality of game. Therefore, in the present study, we aim to investigate the wave propagation in handball game ball in term of mass of the ball and geometrical parameters wit incorporation of the viscoelastic effects of the ball material into account. In this regard, the ball is modeled using thick shell structure and classical elasticity models is utilized to obtain the equation of motion via Hamilton's principle. The displacement field of the ball model is obtained using first order shear deformation theory. The resultant equations are solved with the aid of generalized differential quadrature method. The results show that mass of the ball and viscoelastic coefficient have considerable influence on the state of wave propagation in the ball shell structure.

Unsupervised Non-rigid Registration Network for 3D Brain MR images (3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크)

  • Oh, Donggeon;Kim, Bohyoung;Lee, Jeongjin;Shin, Yeong-Gil
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.64-74
    • /
    • 2019
  • Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

Sensitivity Improvement of Shadow Moiré Technique Using LED Light and Deformation Measurement of Electronic Substrate (LED 광을 이용한 그림자 무아레 방법의 감도 향상 및 모바일 전자 기판의 변형 측정)

  • Yang, Heeju;Joo, Jinwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.141-148
    • /
    • 2019
  • Electronic substrates used in a mobile device is composed of various materials, and when the temperature is changed during manufacturing or operating, thermal deformation and stress concentration occur due to the difference in thermal expansion coefficient of each material. The shadow moiré technique is a non-contact optical method that measures shape or out-of-plane displacement over the entire area, but it is necessary to overcome the Talbot effect for high sensitivity applications. In this paper, LED light sources of various wavelengths was used to overcome the Talbot effect caused in the shadow moiré technique. By using the phase shift method, an experimental method to retain the measurement sensitivity within 10 ㎛/fringe was proposed and evaluated, and this method is applied to the thermal deformation measurement of the mobile electronic substrate. In the case of using white light, there were several areas that could not be measured due to the Talbot effect, but in the case of using blue LED light, it was shown that a precise moiré pattern with a sensitivity of 6.25 ㎛/fringe could be obtained in most areas.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Subjected to Earthquake Load (지진하중을 받는 사장교의 확률유한요소해석 및 신뢰성해석)

  • Shin, Jae-Chul;Han, Sung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-42
    • /
    • 2005
  • Considering the effect by uncertainty in the structures, it is reasonable that the safety examination has to be performed by using method of reliability evaluation. Therefore, in this study, program is developed which can perform the reliability analysis or the dynamic response analysis more efficiently by formularizing the stochastic finite element analysis suitable for the existing reliability analysis about the cable stayed bridge suffering the seismic loads. Based on this program, the characteristic of dynamic responses is analyzed quantitatively by examining the average, the standard deviation and the coefficient of variance about the displacement, the resistance and the tension of cable according to the random variables. and the safety of cable stayed bridge is evaluated by examining of reliability index and failure probability