• Title/Summary/Keyword: displacement coefficient method

Search Result 228, Processing Time 0.035 seconds

The Study on the Determination of the Contact Area of the Circular Plate Resting on Elastic Half-space under Axisymmetric Loading (탄성지반 위의 축대칭 하중을 받는 원판의 접촉응력 해석에 관한 연구)

  • 조현영;정진환;김성철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.87-94
    • /
    • 1997
  • The circular plate resting on Boussinesq's half-space model under axisymmetric loading is studied by a finite element procedure to evaluate the distribution of contact pressure between plate and elastic half-space. The displacement of half-space due to axisymmetric surface loading can be evaluated by double integration of Boussinesq's solution. On that case the analytical integration can be executed for the radial direction but the analytical integration for the circumferential direction is impossible and the numerical integration should be considered. With the radial integration we can get non-dimensional function. Then the numerical integration for the formula is executed for the circumferential direction and the results are approximated 5th order Polynomials by using the least square method. With these 5th order approximate formula, the flexibility matrix of half-space is constructed as the coefficient matrix of nodal contact pressure by the finite element procedures. Iteration procedures are attempted by using this method to determine the separated region.

  • PDF

Influence of Joint on Retrofitting Effect by Exterior Steel Frames of Existing RC Buildings (외부접합공법의 내진보강효과에 미치는 접합부의 영향)

  • Ahn, Choong Weon;Min, Chan Gi;Noh, Eun Choul;Han, Hong Soo;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.183-194
    • /
    • 2015
  • In this paper, Nonlinear Static Pushover analysis method(NSP) is proposed which apply to RC buildings reinforced by external retrofit for seismic performance. Based on previous analysis and research, NSP is more developed by connection nonlinearity according to shear resistance mechanism such as dowel and adhesive resistance as major shear resistance elements. According to the proposed method, structural analysis for example buildings was carried out to evaluate seismic performance of buildings. And, it was confirmed that depending on shear strain and characteristics of joint resistant of external retrofitting are different from internal retrofitting. Furthermore, the strength reduction coefficient of the anchor needs to be considered at the joint design.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Alternative numerical method for identification of flutter on free vibration

  • Chun, Nakhyun;Moon, Jiho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.351-365
    • /
    • 2017
  • The minimization method is widely used to predict the dynamic characteristics of a system. Generally, data recorded by experiment (for example displacement) tends to contain noise, and the error in the properties of the system is proportional to the noise level (NL). In addition, the accuracy of the results depends on various factors such as the signal character, filtering method or cut off frequency. In particular, coupled terms in multimode systems show larger differences compared to the true value when measured in an environment with a high NL. The iterative least square (ILS) method was proposed to reduce these errors that occur under a high NL, and has been verified in previous research. However, the ILS method might be sensitive to the signal processing, including the determination of cutoff frequency. This paper focused on improving the accuracy of the ILS method, and proposed the modified ILS (MILS) method, which differs from the ILS method by the addition of a new calculation process based on correlation coefficients for each degree of freedom. Comparing the results of these systems with those of a numerical simulation revealed that both ILS and the proposed MILS method provided good prediction of the dynamic properties of the system under investigation (in this case, the damping ratio and damped frequency). Moreover, the proposed MILS method provided even better prediction results for the coupling terms of stiffness and damping coefficient matrix.

Electrical Properties of (Ba,Ca)(Ti,Zr)O3 Ceramics for Bimorph-type Piezoelectric Actuator

  • Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.226-229
    • /
    • 2014
  • In this study, lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics and a bimorph-type piezoelectric actuator were fabricated using the normal oxide-mixed sintering method, and their dielectric properties, microstructure, and displacement properties were investigated. From the results of X-ray diffraction, the pattern of the specimen has a pure perovskite structure. In addition, no secondary impurity phases were found. The excellent piezoelectric coefficient of $d_{33}=454pC/N$, the electromechanical coupling factor $k_p=0.51$, the dielectric constant ${\varepsilon}_r=3,657$, the mechanical quality factor $Q_m=239$, and $T_c$(Tetragonal-Cubic) =$90^{\circ}C$ were shown at x= 0.085. ${\Delta}k_p/k_p20^{\circ}C$ and ${\Delta}f_r/f_r20^{\circ}C$ showed the maximum value of -0.255 and 0.111 at $-20^{\circ}C$ and $80^{\circ}C$, respectively. The maximum total-displacement was $60{\mu}m$ under the input voltage of 50 V. As a result, it is considered that lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics is a promising candidate for piezoelectric actuator application for x= 0.085.

Performance Evaluation of IRB System Using Seismic Isolation Test (내진시험을 통한 IRB 시스템의 성능 평가)

  • Park, Young-Gee;Ha, Sung Hoon;Woo, Jae Kwan;Choi, Seung-Bok;Kim, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

Reliability Evaluation of Lateral Spring Constant Applied in Design of Pile Foundation for Bridge Abutment (교대 말뚝기초 설계 시 적용되는 횡방향 스프링정수의 신뢰성 평가)

  • Do, Jongnam;Kim, Nagyoung;Lee, Hyunseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.13-21
    • /
    • 2020
  • In this study, the reliability of the lateral spring constant (k1) applied during design of pile foundation for bridge abutment was evaluated. To do this, the reliability of the factors related to the prediction of the lateral displacement of the abutment pile foundation, which was designed based on the displacement method proposed by Chang (1937), was analyzed. The data used for analysis were the design statements of ◯◯ bridge and ◯◯ IC2 bridge. Then, it was derived by comparing with the numerical analysis (p-y analysis) based on the basic data.

Comparison of the Characteristics of FCAW and SAW for the Brittle Crack Propagation of Welded Parts of BCA Steel in Container Ships (컨테이너선의 후 물재 용접부 취성 균열 전파에 대한 FCAW와 SAW의 비교 특성에 관한 연구)

  • Choi, Kyung-Shin;Lee, Sang-Hoon;Choi, JeongJu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.24-32
    • /
    • 2021
  • The size of container ships is increasing to increase the cargo loading capacity. However, container ships are limited in terms of the hull longitudinal strength. To overcome this limitation, brittle crack arrest steel can be used. This study was aimed at examining the influence of the heat input on the welding procedures of flux cored arc welding and submerged arc welding. In the experiment, the crack tip opening displacement test, which pertains to a parameter of fracture mechanics, was performed, and a 3-point bending tester was adopted. Based on the results, the crack measurement method was presented, and the stress expansion coefficient value for the pre-fatigue crack length was derived according to the heat input after the pre-cracking length was measured. It was noted that the heat input affected the crack tip opening displacement of brittle crack arrest steel.

Wind load characteristics and effects of 1000kV UHV substation frame based on HFFB

  • Hao Tang;Fanghui Li;Xudong Zhi;Jie Zhao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.477-492
    • /
    • 2024
  • This study presents a comprehensive investigation of wind load characteristics and wind-induced responses associated with different wind incidence angles and terrains of the 1000kV UHV substation frame. High-frequency force balance (HFFB) force measurement wind tunnel tests are conducted on the overall and segment models to characterize wind loads characteristics such as the aerodynamic force coefficients and the shape factors. The most unfavorable wind incidence angles and terrains for aerodynamic characteristics are obtained. A finite element model of the substation frame is built to determine the wind-induced response characters based on the aerodynamic force coefficients and bottom forces of the segment models. The mean and root mean square (RMS) values of displacement responses at different heights of the frame structure are compared and analyzed. The influence of wind incidence angle and terrains on wind-induced responses is also examined. The displacement responses in terms of the crest factor method are subsequently transformed into dynamic response factors. The recommended values of dynamic response factors at four typical heights have been proposed to provide a reference for the wind resistance design of such structures.

Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function (고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석)

  • Noh, Hyuk-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.383-390
    • /
    • 2006
  • In this paper, a stochastic field that is compatible with Monte Carlo simulation is suggested for an expansion-based stochastic analysis scheme of weighted integral method. Through investigation on the way of affection of stochastic field function on the displacement vector in the series expansion scheme, it is noticed that the stochastic field adopted in the weighted integral method is not compatible with that appears in the Monte Carlo simulation. As generally recognized in the field of stochastic mechanics, the response variability is not a linear function of the coefficient of variation of stochastic field but a nonlinear function with increasing variability as the intensity of uncertainty is increased. Employing the stochastic field suggested in this study, the response variability evaluated by means of the weighted integral scheme is reproduced with high precision even for uncertain fields with moderately large coefficient of variation. Besides, despite the fact that only the first-order expansion is employed, an outstanding agreement between the results of expansion-based weighted integral method and Monte Carlo simulation is achieved.