• Title/Summary/Keyword: displacement based method

Search Result 1,633, Processing Time 0.032 seconds

An Analysis on Volumetric Displacement of Gerotor Hydraulic Motor using Energy Conservation and Torque Equilibrium - Second Report: The Case of a Revolving and Rotating Inner Rotor - (에너지보존과 토크평형을 이용한 제로터 유압모터의 배제용적 해석 - 내부로터 공·자전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • It is difficult to analytically derive a volumetric displacement formula for a gerotor hydraulic motor due to the complexity of the geometric shape of its gear lobes. This work proposes an analytical method for the volumetric displacement, a relatively easy method based upon two physical concepts: conservation between hydraulic energy and mechanical shaft energy, and torque equilibrium for the rotor's motion. The first research using these concepts was conducted on inner and outer rotors rotating with respect to each rotor axis. This work represents the second report conducted on an inner rotor revolving as a planetary motion on the stationary outer rotor. The formula equations regarding the volumetric displacement and flow rate are derived, and the proposed formula about the volumetric displacement is proven to be the same as another analytical displacement formula: the so-called vane length method. From the formula, volumetric displacement is calculated for an example geometry of the gear lobes. The resultant displacement is confirmed to be the same as the value calculated from the chamber volume method. The proposed analytical formula can be utilized in the analysis and design of gerotor hydraulic motors. Because it is based on torque equilibrium, this formula can provide a better understanding of torque performance, such as torque ripple, in designing a gerotor type motor.

Seismic Performance Improved Design of Reinforced Concrete Columns Strengthened by Steel Jackets Using Displacement-based Design (스틸재킷 보강 철근콘크리트 기둥의 변위기반 내진 성능 개선 설계 방법)

  • Jung, In-Kju;Park, Moon-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, a procedure of performance-based design for the seismic retrofit of reinforced concrete columns strengthened by steel jackets has been presented. In order to predict the target displacement of retrofitted columns, a nonlinear analysis of reinforced concrete columns retrofitted with steel jackets has been developed based on a segmental model with the fiber cross-sectional approach. The seismic displacement level of retrofitted columns is estimated both by the direct displacement-based design method and by the displacement coefficient method. In examples of seismic retrofitted columns, the current seismic retrofit procedure gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures (비대칭 벽식 구조지 변위기초 내진성능평가 및 보강)

  • Hong, Sung-Gul;Ha, Tae-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.23-32
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic leading may cause the stress and/or deformation concentration, which arouse the failure of the structure in an unexpected manner. This study suggests D-R relationship which shows the overall displacement and rotation of the system based on the ultimate displacement capacity of the each lateral load resistant member. Using the suggested D-R relationship and displacement spectrum, the seismic assessment is conducted and verified in comparison with the time history analysis result. Multi-level seismic assessment Is considered which takes multiple seismic hazard levels and respective performance levels into account. Finally, based on the seismic assessment result, seismic rehabilitation process is presented. In this research, two rehabilitation methods are considered. One is done by means of stiffening/strengthening the seismic resistant members, and the other is based on the member ductility. Especially, in the first method, to optimize the rehabilitation result, the rehabilitation problem is modeled as an optimization problem, and solved using BFGS quasi-Newton optimization method.

Seismic evaluation of RC stepped building frames using improved pushover analysis

  • Sarkar, Pradip;Prasad, A. Meher;Menon, Devdas
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.913-938
    • /
    • 2016
  • 'Stepped building' frames, with vertical geometric irregularity, are now increasingly encountered in modern urban constructions. This paper proposes a new approach to determine the lateral load pattern, considering the contributions from the higher modes, suitable for pushover analysis of stepped buildings. Also, a modification to the displacement coefficient method of ASCE/SEI 41-13 is proposed, based on nonlinear time history analysis of 78 stepped frames. When the newly proposed load pattern is combined with the modified displacement coefficient method, the target displacement for the stepped building frame is found to match consistently the displacement demand given by the time history analysis.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program (유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구)

  • Park, Yeoun-Soo;Choi, Sun-Min;Lee, Byung-Geun;Seo, Byung-Chul;Park, Sun-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures

  • Yang, Dixiong;Chen, Guohai;Du, Zongliang
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.793-807
    • /
    • 2015
  • Constructing the influence lines of forces of statically indeterminate structures is a traditional issue in structural engineering and mechanics. However, the existing kinematic method for establishing these force influence lines is an indirect or mixed approach by combining the force method with the theorem of reciprocal displacements, which is yet inconsistent with the kinematic method for statically determinate structure. This paper proposes the direct kinematic method in conjunction with the load-displacement differential relation for exactly constructing influence lines of reaction and internal forces of indeterminate structures. Firstly, through applying the principle of virtual displacement, the formula for influence lines of reaction and internal forces of indeterminate structure via direct kinematic method is derived based on the released structure. Then, a computational approach with a clear concept and unified procedure as well as wide applicability based on the load-displacement differential relation of beam is suggested to achieve conveniently the closed-form expression of force influence lines, and exactly draw them. Finally, three representative examples for constructing force influence lines of statically indeterminate beams and frame illustrate the superiority of the proposed method.

Design and Performance Evaluation of Extension-Type Actuators with a Displacement Amplification Mechanism Based on Chevron Beam

  • Jo, Yehrin;Lee, Euntaek;Kim, Yongdae
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • In this study, a new design of an extension-type actuator (ExACT) is proposed based on a chevron structure with displacement amplification mechanisms by local heating. ExACT comprises diamond-shaped displacement amplification structures (DASs) containing axially oriented V-shaped chevron beams, a support bar that restricts lateral heat deformation, and a loading slot for thin-film heaters. On heating the thin film heater, the diamond-shaped DASs undergo thermal expansion. However, lateral expansion is restricted by the support bar, leading to displacement amplification in the axial direction. The performance parameters of ExACT such as temperature distribution and extended displacement is calculated using thermo-mechanical analysis methods with the finite element method (FEM) tool. Subsequently, the ExACTs are fabricated using a polymer-based 3D printer capable of reproducing complex structures, and the performance of ExACTs is evaluated under various temperature conditions. Finally, the performance evaluation results were compared with those of the FEM analysis.