• Title/Summary/Keyword: displacement based method

Search Result 1,633, Processing Time 0.038 seconds

Wavelet-based damage detection method for a beam-type structure carrying moving mass

  • Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.81-97
    • /
    • 2011
  • In this research, the wavelet transform is used to analyze time response of a cracked beam carrying moving mass for damage detection. In this respect, a new damage detection method based on the combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is more capable in making damage signature evident than the traditional two approaches based on direct investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded that strain data outperforms displacement data at the same point in revealing damage signature. In addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and pure inertia force along the deflection direction to damage detection is investigated on a sample case. From this analysis it is concluded that centrifuge force has the most influence on making both displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand, are observed to be insufficient alone.

A multimodal adaptive evolution of the N1 method for assessment and design of r.c. framed structures

  • Lenza, Pietro;Ghersi, Aurelio;Marino, Edoardo M.;Pellecchia, Marcello
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.271-284
    • /
    • 2017
  • This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with inplan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

Measurement of Thermal Diffusivity Using Deformation Angle Based on the Photothermal Displacement Method (광열변위법의 변형각을 이용한 열확산계수 측정)

  • Jeon, Pil-Su;Lee, Gwang-Jae;Yu, Jae-Seok;Park, Yeong-Mu;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.302-309
    • /
    • 2002
  • A new method of measuring the thermal diffusivity of solid material at room temperature using photothermal displacement is proposed. The influence of the parameters, such as radius and modulation frequency of the pump beam and the sample thickness, was studied. In previous works, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, however, we proposed the new analysis method based on the real part of deformation angle as the relative position between two beams. From the zero-crossing position of real part of deformation angle with respect to the pump beam, the thermal diffusivity of the materials can be obtained. The experimental values for different samples obtained by applying the new method are in good agreement with the literature values.

Evaluation of Robot Calibration Performance based on a Three Dimensional Small Displacement Measuring Sensor (3차원 미소변위센서 기반 로봇 캘리브레이션 성능 검토)

  • Nguyen, Hoai-Nhan;Kang, Hee-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1267-1271
    • /
    • 2014
  • There have been many autonomous robot calibration methods which form closed loop structures through the various attached sensors and mechanical fixtures. Single point calibration among them has been used for on-site calibration due to its convenience of implementation. The robot can reach a single point with infinitely many configurations so that single point calibration algorithm can be set up and easily implemented relative to the other methods. However, it is not still easy to drive the robots' sharp edge to its corresponding edge of the fixture. This is error-prone process. In this paper, we propose a 3 dimensional small displacement measuring sensor and a robot calibration algorithm based on this sensor. This method relieves the difficulty of matching two edges in the single point calibration and improves the resulting robot accuracy. Simulated study is carried out on a Hyundai HA06 robot to show the effectiveness of the proposed method over the single point calibration. And also, the resulting robot accuracy is compared with that from 3D laser tracker based calibration to show the dependency of robot accuracy on range of the workspace where the measurement data are collected.

Vision-based multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation

  • Lee, Jong-Han;Jung, Chi-Young;Choi, Eunsoo;Cheung, Jin-Hwan
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • The safety of structures is closely associated with the structural out-of-plane behavior. In particular, long and slender beam structures have been increasingly used in the design and construction. Therefore, an evaluation of the lateral and torsional behavior of a structure is important for the safety of the structure during construction as well as under service conditions. The current contact measurement method using displacement meters cannot measure independent movements directly and also requires caution when installing the displacement meters. Therefore, in this study, a vision-based system was used to measure the in-plane and out-of-plane displacements of a structure. The image processing algorithm was based on reference objects, including multiple targets in Lab color space. The captured targets were synchronized using a load indicator connected wirelessly to a data logger system in the server. A laboratory beam test was carried out to compare the displacements and rotation obtained from the proposed vision-based measurement system with those from the current measurement method using string potentiometers. The test results showed that the proposed vision-based measurement system could be applied successfully and easily to evaluating both the in-plane and out-of-plane movements of a beam including twisting rotation.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Simplified Method for the Determination of Cumulative Landslide Displacement in the Event of an Earthquake using "Slide Block" Type Analyses (지진발생시 Slide Block형 분석을 이용한 누적 산사태 변위 결정 단순법)

  • Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Earthquake induced landslides have caused tens of thousands of deaths and billions of dollars of damage during the last century alone. Determining the potential seismic hazard presented by statically stable slopes is essential for the evaluation of substantial landslide movement during an earthquake. Newmark's method for estimating landslide displacement under dynamic loading was presented and applied to two case studies. A simplified energy-based method was then be developed to estimate the Newmark's displacement.

  • PDF

New Engineering Approach for Estimating Crack Opening Displacement of Complex Cracked Pipes (복합균열이 존재하는 배관의 균열개구변위 계산을 위한 새로운 공학적 계산식)

  • Kim, Yeong-Jin;Heo, Nam-Su;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1235-1241
    • /
    • 2001
  • An engineering estimation equation for the crack opening displacement(COD) is proposed for a complex cracked pipe, based on the reference stress approach. To define the reference stress, a simple plastic limit load analysis for the complex cracked pipe subjected to combined bending and tension is performed considering the crack closure effect in the compressive-stressed region. Comparison with ten published test data and the results from existing method shows that the present method not only reduces non-conservatism associated with the existing method, but also provides consistent and overall satisfactory results.

Topology Optimization of Geometrically Nonlinear Structure Considering Load-Displacement Trajectory (하중-변위 관계를 고려한 기하 비선형 구조물의 위상 최적 설계)

  • Noh, Jin-Yee;Yoon, Gil-Ho;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.779-785
    • /
    • 2009
  • This paper is concerned with a computational approach for topology optimization of geometrically nonlinear structures following specific load-displacement trajectories. In our previous works, attention was paid to stabilize topology optimization involving large displacement and a method called the element connectivity parameterization was developed. Here, we aimed to extend the element connectivity parameterization method to find an optimal geometrically nonlinear structure yielding a specific load-displacement trajectory. In contrast to designing a stiffest structure, the trajectory design problem requires special consideration in topology optimization formulation and solution procedure. Some numerical problems were considered to test the developed element connectivity parameterization based formulation.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.