• 제목/요약/키워드: displacement based assessment

검색결과 211건 처리시간 0.028초

스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성 (Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions)

  • 김정한;김민규;최인길
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

탄소섬유강화플라스틱 재료 레저선박의 구조강도 평가를 위한 시험설비 구축과 운용에 관한 연구 (The Development of Structural Test Facility for the Strength Assessment of CFRP Marine Leisure Boat)

  • 정한구;장양;염덕준
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.312-320
    • /
    • 2017
  • This paper deals with the development of structural test facility for the strength assessment of marine leisure boat built from carbon fiber reinforced plastics (CFRP) materials. The structural test facility consists of test jig, load application and control system, and data acquisition system. Test jig, and load application and control system are designed to accommodate various size and short span to depth ratios of single skin, top-hat stiffened and sandwich constructions in plated structural format such as square and rectangular shapes. A lateral pressure load, typical and important applied load condition to the plates of the hull structure for marine leisure boat, is simulated by employing a number of hydraulic cylinders operated automatically and manually. To examine and operate the structural test facility, five carbon/epoxy based FRP square plates having the test section area of $1m^2$, which are part of CFRP marine leisure boat hull, are prepared and they are subjected to monotonically increasing lateral pressure loads. In the test preparation, considering the symmetry of the plates geometry, various strain gauges and linear variable displacement transformer are used in conjunction with data acquisition system utilizing LabVIEW. From the test observation, the responses of the CFRP hull structure of marine leisure boat are understood by obtaining load to deflection and strain to load curves.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제43권5호
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

낙하 충격을 받는 다점 구속 장치를 착용한 헬기 승무원의 상해도 평가에 관한 연구 (A Study on the Injury Assessment of Helicopter's Crew with Multi Point Restraint System under Drop Impact)

  • 이중현;이영신
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.590-599
    • /
    • 2009
  • In this paper, a method of modeling seat belts on crew seat during dynamic seat testing was studied. The body segments of the occupant were modeled with joints. The joints consisted with various stiffnesses, dampings, and frictions. Three types of seat belt restraint systems were investigated. The analysis for on the injury assessment of helicopter's crew under drop impact was conducted. The effectiveness of the seat belt system for crashworthiness and safety was evaluated. As the results of impact analysis, head, neck and spine of the crew can be easily damaged in the vertical direction more than the longitudinal direction. Based on the verified model, behavior of human body was studied with three-point restraint systems. The displacement and injury level of the 12-point restraint system was the smallest.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

SAR 영상을 활용한 지반침하의 위험평가를 위한 지표결정에 대한 연구 (A Study on the Determination of Indicators for the Risk Assessment of Ground Depression Using SAR Imageson)

  • 이효진;윤홍식;한학
    • 한국지반환경공학회 논문집
    • /
    • 제22권7호
    • /
    • pp.13-20
    • /
    • 2021
  • 2015년 4월 개통한 호남고속철도 근처 노반의 침하 문제가 지속적으로 제기되고 있으며 이에 따라 호남고속철도 인근지역의 지반 안정성 또한 문제가 있을 수 있다. 위험지도를 제작하는데 있어서 지표 및 지표를 결정하는 인자를 선정하는 것은 매우 중요하다. 기존의 위험지표는 관측된 기간 중 가장 마지막 관측날을 기준으로한 최종 변위량으로 산정하는데 침하 원인과 지표의 거동을 분석하기 위해서는 시계열적인 지표변위를 확인해야한다. 또한 광범위한 지역의 경우 직접 수준측량을 실시하기에 경제적으로 비효율적이므로 SAR 영상을 이용해 지표변위를 관측하고자 하였다. 본 논문에서는 PS-InSAR기법을 이용해 시계열 지표변위를 관측하였으며 위험지표를 결정하기 위한 인자로 최종지표변위량, 누적지표변위량, 최소변위량과 최대변위량의 차를 이용해 각 인자로 위험도를 등급화하여 비교하였다. 그 결과 최종변위량의 위험도 등급과 각 인자 간 위험도 등급이 상이하였으며 위험지표를 결정하는데 있어 다양한 관점의 인자를 추가하는 것을 제안하였다. 이는 지반침하의 원인을 찾고 해결방안을 모색하는데 있어 중요한 연구가 될 것으로 기대한다.

CAD 모델 기반 비접촉 기상 측정에 관한 연구 (Non-contacting OMM (On Machine Measurement) based on CAD Model)

  • 권세진;이정근;박정환;고태조;김선호
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.134-141
    • /
    • 2003
  • An industrial product is designed and fabricated, followed by the inspection process in order to check whether it is dimensionally tolerable or not. The machining process produces a part such as a mold or die, in which the three-dimensional coordinate might be measured by a CMM (Coordinate Measuring Machine) for assessment of its dimension. It is not ignorable, however, that a CMM measurement requires a lot of operating time and cost, which has led to many studies on the OMM system. The OMM system can be categorized into contact and non-contact types, and each of which has its own strengths and weaknesses. Non-contacting types generally utilize structured lights, sounds or magnetic fields. Though they show rather poor performance in positional accuracy, the measuring speed is faster than the contacting probes. This paper presents the development of an OMM system based on a non-contacting laser displacement sensing apparatus and CAD model. The system is composed of software modules of center-aligning and measuring, which has been operated and verified on a NC machining center on a shop floor.

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.