• 제목/요약/키워드: displacement amplification factor

검색결과 26건 처리시간 0.022초

비탄성 이력응답 및 지진특성을 반영한 변위증폭계수에 관한 연구 (A Study of Displacement Amplification Factors Considering Hysteretic Behavior of Structural Systems and Earthquake Characteristics)

  • 송종걸;김학수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.777-782
    • /
    • 2007
  • Displacement amplification factor can be used to estimate inelastic displacement demands from elastic displacement demands, The simple formula for displacement amplification factor considering hysteretic behavior of structural system and earthquake characteristics is proposed. And the effects of several parameters such as displacement ductility, strain hardening ratio, period, characteristics of earthquakes and hysteretic models for the displacement amplification factor are evaluated. Accuracy of the proposed formula is evaluated by comparing the displacement amplification factors estimated by existing and proposed formula with those calculated from inelastic time history analysis. The displacement amplification factors by proposed formulas provide a good agreement with those calculated by inelastic time history analysis.

  • PDF

Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects

  • Lin, Jui-Liang;Wang, Wei-Chun;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제8권2호
    • /
    • pp.443-462
    • /
    • 2015
  • Some model building codes stipulate that the design displacement of a building can be computed using the elastic static analysis results multiplied by the deflection amplification factor, $C_d$. This approach for estimating the design displacement is essential and appealing in structural engineering practice when nonlinear response history analysis (NRHA) is not required. Furthermore, building codes stipulate the consideration of accidental torsion effects using accidental eccentricity, whether the buildings are symmetric-plan, or asymmetric-plan. In some model building codes, the accidental eccentricity is further amplified by the torsional amplification factor $A_x$ in order to minimize the discrepancy between statically and dynamically estimated responses. Therefore, this warrants exploration of the reliability of statically estimated design displacements in accordance with the building code requirements. This study uses the discrepancy curves as a way of assessing the reliability of the design displacement estimates resulting from the factors $C_d$ and $A_x$. The discrepancy curves show the exceedance probabilities of the differences between the statically estimated design displacements and NRHA results. The discrepancy curves of 3-story, 9-story, and 20-story example buildings are investigated in this study. The example buildings are steel special moment frames with frequency ratios equal to 0.7, 1.0, 1.3, and 1.6, as well as existing eccentricity ratios ranging from 0% to 30%.

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests

  • Chun, Nakhyun;Jeon, Bubgyu;Kim, Sungwan;Chang, Sungjin;Son, Suwon
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.155-165
    • /
    • 2022
  • The use of electricity and communication between electronic devices is increasing daily, which makes the stability of electrical power supply vital. Since the 1990s, large earthquakes have occurred frequently causing considerable direct damage to electrical power facilities as well as secondary damage, such as difficulty in restoring functions due to the interruption of electric power supply. Therefore, it is very important to establish measures to protect electrical power facilities, such as transformers and switchboards, from earthquakes. In this study, a 154 kV transformer whose service life had expired was installed on the base fabricated by simulating the field conditions and conducting the shaking table tests. The dynamic characteristics and seismic behavior of the 154 kV transformer were analyzed through the resonance frequency search test and seismic simulation test that considers the front, rear, left, and right directions. Since the purpose of this study is to analyze the acceleration amplification in the bushing due to the acceleration amplification, the experimental results were analyzed focusing on the acceleration response and the converted acceleration amplification ratio rather than the failure due to the displacement response of the transformer. The seismic force amplification at the transformer bushing was evaluated by simulating the characteristics of electrical power facilities in South Korea, and compared with the IEC TS 61463 acceleration amplification factor. Finally, the amplification factor at zero period acceleration (ZPA) modified for each return period was summarized. The results of this study can be used as data to define the amplification factor at ZPA of the transformer bushing, simulating the characteristics of electrical power facilities in Korea.

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction

  • Shabani, Mohammad J.;Shamsi, Mohammad;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.187-200
    • /
    • 2021
  • The main factor for the amplification of ground motions near the crest or the toe of a slope is the reflection of the incident waves. The effects of the slope topography on the surrounding lands over the crest or at the toe can amplify the seismic responses of buildings. This study investigates the seismic performance of the slope topography and three mid-rise buildings (five, ten, and fifteen-storey) located near the crest and toe of the slope by 3D numerical analysis. The nonlinear model was used to represent the real behavior of building and ground elements. The average results of seven records were used in the investigations. Based on the analysis, the amplification factor of acceleration near the crest and toe of the slope was the most effective at distances of 2.5 and 1.3 times the slope height, respectively. Accordingly, the seismic performance of buildings was studied at a distance equal to the height of the slope from the crest and toe. The seismic response results of buildings showed that the slope topography to have little impact on up to five-storey buildings located near the crest. Taking into account a topography-soil-structure interaction system increases the storey displacement and base shear in the building. Accordingly, in topography-soil-structure interaction analyses, the maximum lateral displacement was increased by 71% and 29% in ten and fifteen-storey buildings, respectively, compare to the soil-structure interaction system. Further, the base shear force was increased by 109% and 78% in these buildings relative to soil-structure interaction analyses.

근접-단층 지진에 대한 저하시스템의 변위응답 (Displacement Response of Degrading Systems to Near-Fault Ground Motions)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2000
  • 단층에 근접한 지진동에 대하여 성능이 저하되는 단자유도계의 변위응답에 대하여 연구하였다 5% 의 감쇠비를 갖는 세단계의 성능저하시스템을 5개의 단층에 근접한 지진동에 대하여 해석하였다 해석결과로부터 성능저하시스템의 비탄성 변위응답은 비저하시스템에 비하여 큰 값을 나타냄을 알 수 있었다 또한 성능저하 특성이 증가할수록 변위응답은 커지는 경향이 있다 이러한 변위증폭은 구조물의 고유주기 강도와 성능저하특성에 영향을 받으며 짧은 주기영역에서는 큰 값을 나타내며 긴 주기영역에서는 변위증폭이 거의 발생하지 않는다 단층에 근접한 각각의 지진동에 대한 변위증폭의 최대값은 1초 보다 작은 주기영역에서 비저하시스템의 4배 정도이다 변위증폭계수의 평균값은 짧은 주기영역에서는 2의 값을 가지면 구조물의 고유주기가 길어질수록 1에 수렴해 감을 알 수 있었다.

  • PDF