• Title/Summary/Keyword: dispersion method

Search Result 1,631, Processing Time 0.033 seconds

Tribology Properties of Nanodiamond Dispersed Engine Oil (나노다이아몬드가 분산된 엔진오일의 마찰공학 특성)

  • Jun, S.H.;Uhm, Y.R;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.417-422
    • /
    • 2011
  • Hydrophobic nanodiamond (ND) were dispersed in engine oil (Helix Oil, Shell co.) as an additives to improve tribology properties. In this study, nanodiamond prepared by an explosive method was used. Tribology properties of both pure Helix oil and engine oil containing ND additive were evaluated. The rotating disks were made of Gray Cast Iron (240 Hv) and SKD11 (710 Hv). Surface topographies of the disks' wear tracks and friction coefficient were compared. The results show that nanodiamond-dispersed lubricants are capable of reducing these metals' wear loss. The friction coefficient is strongly affected to the hardness of wear track.

Preparation and Dissolution Properties of Ftorafur-Galatin Microcapsules (후토라훌-젤라틴 마이크로캅셀의 제조 및 용출특성에 관한 연구)

  • Lee, Su-Jung;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.129-134
    • /
    • 1990
  • Gelatin microcapsules containing Ftorafur, a hydrophilic anticancer agent, were prepared with congealable disperse-phase emulsification method. The preparation was based on dispersion of ftorafur-gelatin solution with Tween #40 or Span #20 in liquid paraffin. A cationic surfactant, benzethonium chloride, was used to prevent the microcapsules from aggregation. In the case of microcapsules prepared with Tween #40 or Span #20, mean particle size decreased and narrow size distribution was observed. The intrinsic dissolution rate of ftorafur in microcapsules with 1% span #20 was 8.5 times lower than that of intact ftorafur.

  • PDF

Nanostructured Alloy Electrode for use in Small-Sized Direct Methanol Fuel Cells (소형 직접 메탄올 연료전지를 위한 나노 합금 전극)

  • Park Gyeong Won;Choi Jong Ho;Park In Su;Nam Woo Hyeon;Seong Yeong Eun
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.83-88
    • /
    • 2003
  • PtRu alloy and $PtRu-WO_3$ nanocomposite thin-film electrodes for methanol electrooxidation were fabricated by means of a sputtering method. The structural and electrochemical properties of well-defined PtRu alloy thin-film electrodes were characterized using X-ray diffraction, Rutherford backscattering spectroscopy. X-ray photoelectron spectroscopy, and electrochemical measurements. The alloy thin-film electrodes were classified as follows: Pt-based and Ru-based alloy structure. Based on structural and electrochemical understanding of the PtRu alloy thin-film electrodes, the well-controlled physical and (electro)chemical properties of $PtRu-WO_3$, showed superior specific current to that of a nanosized PtRu alloy catalyst, The homogeneous dispersion of alloy catalyst and well-formed nanophase structure would lead to an excellent catalytic electrode reaction for high-performance fuel cells. In addition, the enhanced catalytic activity in nanocomposite electrode was found to be closely related to proton transfer in tungsten oxide using in-situ electrochemical transmittance measurement.

  • PDF

Evaluation of Microwave Dielectric Properties in $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Ta_{0.5})O_3$ Ceramics by the Dielectric Mixing Rule (유전체 혼합 법칙을 이용한 $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Ta_{0.5})O_3$세라믹스의 마이크로파 유전특성 평가)

  • 박흥수;윤기현;김응수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.240-246
    • /
    • 2000
  • The microwave dielectric properties of the complex perovskite (Pb0.5Ca0.5)(Fe0.5Ta0.5)O3 ceramics were investigated with the porosity and the dielectric mixing rule. Assuming that the specimens were mixtures of real dielectrics and pores, with 3-0 connectivity, the ionic polarizabilities modified by Maxwell's equation were more close to the theoretical values rather than those modified by Wiener's equation in porous specimens. The theoretical dielectirc loss were obtained with the infrared reflectivity spectra from 50 to 4000cm-1, which were calculated by Kramers-Kronig analysis and classical osciallator model. The relative tendency of dielectric loss calculated from the theoretical value and Maxwell's equation in the specimens with different porosities was in good agreement with the one by the post resonant method.

  • PDF

Fabrication of Large-Size Alumina by Pressure-Vacuum Hybrid Slip Casting

  • Cho, Kyeong-Sik;Lee, Seung Yeul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.396-401
    • /
    • 2013
  • The size of various alumina ceramics used in the semiconductor and display industries must be increased to increase the size of wafers and panels. In this research, large alumina ceramics were fabricated by pressure-vacuum hybrid slip casting (PVHSC) employing a commercial powder, followed by sintering in a furnace. In the framework of the PVHSC method, the consolidation occurs not only by compression of the slip in the casting room but also by suction of the dispersion medium from the casting room. When sintered at $1650^{\circ}C$ for 4 h, the fabricated large-size alumina ($1,550{\times}300{\times}30mm^3$) exhibited a dense microstructure corresponding to more than 99.2% of the theoretical density and a high purity of 99.79%. The flexural and compressive strengths of the alumina plate were greater than 340 MPa and 2,600 MPa, respectively.

Liquid crystal alignment and pretilt angle generation in the cell using linearly polarized UV light Irradiation on polymer surface (고분자막에 직선편광된 자외선 조사를 이용한 셀의 액정배향과 프리틸트각의 발생)

  • 서대식;이정호;이창훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.259-262
    • /
    • 1998
  • The liquid crystal (LC) alignment and pretilt angle generation using photo-alignment method were investigated in this study. We obtained that the monodomain alignment of nematic(N) LC increases with increasing irradiation time in a cell with linearly polarized ultraviolet (LPUV) light irradiation on polyimide (Pl) surfaces. We consider that the monodomain alignment is able to be anisotropic dispersion force due to photo-depolymerization of polymer with LPUV light irradiation on Pl surface. Also, we observed that the uniform alignment of NLC is obtained in a cell with normally LPUV light irradiated on Pl surface at 30 min. and then oblique LPUV is secondly irradiated on Pl surfaces rotated by 90$^{\circ}$. The pretilt angle of NLC is generated about 1.5$^{\circ}$ with oblique angle 60$^{\circ}$.

  • PDF

The Formation of Magnetite Nanoparticle in Ordered System of the Soybean Lecithin

  • Li, Tiefu;Deng, Yingjie;Song, Xiaoping;Jin, Zhixiong;Zhang, Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.957-960
    • /
    • 2003
  • A method of preparation of magnetite nanoparticles in ordered systems, as in vesicle and microemulsion, consisting of soybean lecithin and water has been introduced. The size of magnetite grain was controlled by the content of soybean lecithin and size of liposomes in the systems. It was found by experiment that magnetite nanoparticles were formed inside the double layer vesicles. The magnetite nanoparticles were separated by magnetic separation and centrifugation and the dispersion of the magnetite nanoparticles prepared at 10% (w/w) soybean lecithin was particularly stable. The formation of pure magnetite nanoparticles was confirmed by analyses of XRD and electron diffraction pattern.

Multi-stack Technique for a Compact and Wideband EBG Structure in High-Speed Multilayer Printed Circuit Boards

  • Kim, Myunghoi
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.903-910
    • /
    • 2016
  • We propose a novel multi-stack (MS) technique for a compact and wideband electromagnetic bandgap (EBG) structure in high-speed multilayer printed circuit boards. The proposed MS technique efficiently converts planar EBG arrays into a vertical structure, thus substantially miniaturizing the EBG area and reducing the distance between the noise source and the victim. A dispersion method is presented to examine the effects of the MS technique on the stopband characteristics. Enhanced features of the proposed MS-EBG structure were experimentally verified using test vehicles. It was experimentally demonstrated that the proposed MS-EBG structure efficiently suppresses the power/ground noise over a wideband frequency range with a shorter port-to-port spacing than the unit-cell length, thus overcoming a limitation of previous EBG structures.

Pt Coating on Flame-Generated Carbon Particles (화염법을 이용한 Pt/C 촉매 제조)

  • Choi, In-Dae;Lee, Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission electron microscopy (TEM), Energy-dispersive spectra (EDS) and X-ray diffraction (XRD). Crystalinity and surface bonding groups of carbon are investigated through X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

Development of Vehicle Tunnel Ventilation System (도로터널 환기시스템 개발연구)

  • Lee, Chang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF