• Title/Summary/Keyword: dispersion method

Search Result 1,631, Processing Time 0.026 seconds

Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.325-335
    • /
    • 2019
  • In the present study, nonlocal strain gradient theory (NSGT) is developed for wave propagation of functionally graded (FG) nanoscale plate in the thermal environment by considering the porosity effect. $Si_3N_4$ as ceramic phase and SUS304 as metal phase are regarded to be constitutive material of FG nanoplate. The porosity effect is taken into account on the basis of the newly extended method which considers coupling influence between Young's modulus and mass density. The motion relation is derived by applying Hamilton's principle. NSGT is implemented in order to account for small size effect. Wave frequency and phase velocity are obtained by solving the problem via an analytical method. The effects of different parameters such as porosity coefficient, gradient index, wave number, scale factor and temperature change on phase velocity and wave frequency of FG porous nanoplate have been examined and been presented in a group of illustrations.

The distribution of magnetic field strength in Orion A region

  • Hwang, Jihye;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • Magnetic fields play an important role in supporting molecular clouds against gravitational collapse. The measured magnetic field strengths in molecular clods enable us to see the effect of magnetic fields in star-forming regions. People have used the Chandrasekhar and Fermi (CF) method to estimate magnetic field strength from observational quantities of molecular cloud density, turbulent velocity and polarization angle dispersion. However, previous studies obtained just one magnetic field strength over the quite large region of a molecular cloud by using the CF method. We here suggest a way to estimate magnetic field strength distribution in Orion A region. We used 450 and 850-micron polarization data of James Clerk Maxwell Telescope (JCMT). Magnetic field strengths were estimated in two wavelengths with 4 pixel resolutions of 16, 20, 24 and 28". Through statistical analysis, we proved the difference of magnetic field strengths between two wavelengths were caused by the difference of their beam sizes. Additionally, we calculated the radii of curvature of polarization segments to select a best pixel resolution for estimating the magnetic field distribution. The pixel resolution should be larger than a radius of curvature. We selected that 20 or 24" pixel resolutions are good choices towards Orion A region.

  • PDF

Ethnic Congregation and Residential Changes in Korea

  • Kim, Hyejin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • As the number of immigrants staying in Korea has gradually increased since the mid-1990s, the rate of chronicle migration from certain countries such as China and Vietnam remain high. Registered foreign residents have formed ethnic communities depending on their countries of origin, and the purpose of stay, Korean language literacy, rent, and accessibility have resulted in their self-congregation or forced segregation. This study aims to explore the direction in which immigrants' residential distribution move over time, and whether the ethnic communities show any differences in the level of congregation or segregation. It focuses on identifying the residential distribution of Korean-Chinese, Chinese, and Vietnamese at the city, county, and district level across the country in Korea and examining the congregation and residential changes of three groups over the past decade using centrographic method. Comparing the location as well as the level of residential congregation or dispersion of three groups, which account for the majority of non-professional immigrants in Korea, it will provide a basis for further research on residential congregation or segregation of immigrants in the future.

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory

  • Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.461-479
    • /
    • 2022
  • A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.

Elastic wave propagation analysis in sandwich nanoplate assuming size effects

  • Amir Behshad;Maryam Shokravi;Akbar Shafiei Alavijeh;Hamed, Karami
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This paper presents a study on the wave propagation of functionally graded material (FGM) sandwich nanoplates with soft core resting on a Winkler foundation. The structure is modelled by classical theory. Motion equations are derived by the assumption of nonlocal Eringen theory and energy method. Then, the equations are solved using an exact method for finding phase velocity responses. The effects of Winkler foundation, nonlocal parameters, thickness and mode number on the dispersion of elastic waves are shown. With the increase of spring constant, the speed of wave propagation increases and reaches a uniform state at a higher wave number.

A radial point interpolation method for 1D contaminant transport modelling through landfill liners

  • Praveen Kumar, R.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • In the framework of meshfree methods, a new methodology is developed based on radial point interpolation method (RPIM). This methodology is applied to a one-dimensional contaminant transport modelling in the saturated porous media. The one-dimensional form of advection-dispersion equation involving reactive contaminant is considered in the analysis. The Galerkin weak form of the governing equation is formulated using 1D meshfree shape functions constructed using thin plate spline radial basis functions. MATLAB code is developed to obtain the numerical solution. Numerical examples representing various phenomena, which occur during migration of contaminants, are presented to illustrate the applicability of the proposed method and the results are compared with those obtained from the analytical and finite element solutions. The proposed RPIM has generated results with no oscillations and they are insensitive to Peclet constraints. In order to test the practical applicability and performance of the RPIM, three case studies of contaminant transport through the landfill liners are presented. A good agreement is obtained between the results of the RPIM and the field investigation data.

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

Analysis and Design of Branch Line Coupler using Microstrip Lines with Overlay (덮개층이 있는 마이크로스트립 선로를 이용한 브랜치 선로 결합기 해석 및 설계)

  • 이승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.795-801
    • /
    • 2001
  • A method of miniaturizing branch line coupler is presented. The method utilizes the microstrip line with overlay(or superstrate). The frequency dependent characteristics, dispersion and characteristic impedance, of this line are obtained by Immitance method in spectral domain and Method of Line. The relevant spectral domain Green's function is given and used to obtain numerical results. The branch line couplers with overlays are designed and fabricated at 2 GHz. The experimental results show that the size of coupler with overlay(${epsilon}_r$=10.2) is 31.4 precent smaller than conventional coupler. This minimized coupler is suitable for Butler Matrix as feeder for mobile communication beam forming antenna.

  • PDF

Performance of V2O5-TiO2 Catalyst Prepared by Various Methods for Removal of Hydrogen Sulfide Emitted from Steel Smelting Process (다양한 제조방법으로 제조된 V2O5-TiO2 촉매를 이용한 제련공정에서 발생한 황화수소 제거능 비교)

  • Kim, Moon il
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.501-505
    • /
    • 2021
  • V2O5-TiO2 catalysts were prepared by various methods. V2O5-TiO2 were prepared by sol-gel method with different drying conditions (aerogel and xerogel), and V2O5 supported on TiO2 obtained by sol-gel method with precipitation-deposition method and impregnation method. The performance of the V2O5-TiO2 catalysts was investigated for the selective oxidation of hydrogen sulfide in the stream containing both ammonia and excess water. All the catalysts showed good dispersion of vanadium and they had high H2S conversion with no or little production of sulfur dioxide. The V2O5-TiO2 aerogel catalyst prepared by sol-gel method with drying under super critical condition had the highest surface area which led to better catalytic activity compared to those by other synthesis methods.

Estimation of the Liability Risk for Release of Chemicals at Chemical Plant (화학플랜트에서의 화학물질 누출사고에 대한 배상책임 위험도 산정)

  • Moon, Jung Man;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.438-449
    • /
    • 2020
  • This study is to improve the method of calculating the risk of liability that arise from release and dispersion of chemicals outside the plant in process industries such as chemical and petrochemical plants. To achieve this goal, the correlation factors with the risk of chemical release accident is derived by simulating release and dispersion of substances (14 types) designated by Ministry of Environment as preparation for accident, analyzing the cases of chemical release and effects of plant life damage. The method of calculating chemical liability risk was modified and supplemented based on the results obtained from the study. The correlation coefficient between the probit value of 14 chemical types and the liability risk by EURAM (European Union Risk Ranking Method) was -0.526, while the correlation coefficient with the modified chemical release accident risk was 0.319. Thus, the value from modified method shows that they appear to be correlated. According to modified calculating methodology, the correlation between ERPG-2 value and liability risk of 97 chemical types was -0.494 which is 19 times higher than existing liability risk correlation as absolute value. And the correlation coefficient of corrosion risk was 0.91. The standardized regression coefficients (β) value of correlation factors that affected the increase and decrease of risk were derived in order of Corrosion Index(0.713), ERPG-2 (0.400) and NFPA Health Index (0.0680) by values. It is expected that these findings this study result will also enable the calculation of reasonable chemical release liability risk for existing and new chemical, and will help use them as quantitative liability risk management indicators for chemical plant site.