• 제목/요약/키워드: dispersion increase ratio

검색결과 92건 처리시간 0.019초

다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성 (S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil)

  • 정희옥
    • 한국지구과학회지
    • /
    • 제25권8호
    • /
    • pp.774-783
    • /
    • 2004
  • 다중채널 탄성파 자료를 이용하여 낙동강 하구 삼각주 지역 연약지반의 지반 특성을 구하기 위하여 S파 속도와 Q$s^{-1}$ 구조를 구하고 이를 시추조사 결과와 비교하였다. 다중채널 신호의 분산곡선을 역산하여 S파 속도구조를 구하고 감쇠지수(attenuation coefficient)를 구하였다. 다중채널 신호 중 음원에서 가장 가까운 신호를 기준 신호로 정하고 10 Hz에서 45 Hz 사이의 주파수에 대하여 거리에 따라 기준 신호에 대한 진폭의 비가 감소하는 정도를 나타내는 기울기를 구하여 감쇠지수를 결정하였다. 이 감쇠지수를 역산하여 지반 최상부 8 m 층의 S파 속도와 함께 Q$s^{-1}$를 구하였다. 이 지역의 시추조사에 의하면 이 지역의 지층은 크게 상부 4 m 실트질 모래층과 하부 4 m 실트질 점토층으로 나누어진다. 표면파 역산에 의해 구해진 S파 속도와Q$s^{-1}$를 시추조사 결과와 비교해보면, 상부 실트질 모래층에서 S파 속도의 공간적 해상도는 약 80m/sec로 하부 실트질 점토층의 속도 40m/sec보다 상대적으로 높은 값을 보인다. 각 층에서 S파 속도의 공간적 해상도는 뚜렷하다. Q$s^{-1}$의 공간구조는 상부 실트질 모래층에서 약 0.02를 보이고 하부 실트질 점토층에서 0.03으로 증가하는 양상을 보인다. Q$s^{-1}$의 공간적 해상도는 상부 약 5 m 구간에서는 양호하나 그 보다 깊은 곳에서는 공간적 해상도가 아주 낮아지는 것을 볼 수 있다. 이 조사지역에서는 실트질 모래층에서 실트질 점토층보다 높은 S파 속도가 나타나고 낮은 Q$s^{-1}$ 값을 보인다. 그러나, 지반의 S파 속도와 Q$s^{-1}$를 결정하는 다른 많은 요인들이 있으므로 이를 일반화하기 위해서는 연약지반의 S파 속도와Q$s^{-1}$에 관한 자료와 연구가 집적되어야 할 것이다.

석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구 (A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages)

  • 이동식;김현용;김사덕;홍성걸
    • 헤리티지:역사와 과학
    • /
    • 제46권3호
    • /
    • pp.212-228
    • /
    • 2013
  • 파손된 석조문화재를 재사용하기 위한 방법으로 금속보강재를 사용하게 되는데 현재까지 보강재에 대한 보존처리 지침 없이 처리자의 경험에 의해서 이루어지다 보니 여러 가지 문제점이 도출되고 있다. 따라서 2차적인 원부재의 훼손을 최소화하기 위한 금속봉의 구조적 보강방법과 거동 특성 등을 제안된 실험체를 통해 검증 받아 금속보강재 매입방법에 관한 설계기준을 마련하고자 하였다. 절단면에 에폭시수지 접합만 할 경우 원 모재 물성의 70% 정도밖에 회복되지 않아 30%에 대한 금속보강재의 구조적 보강이 필요하다. 금속봉은 석재 취성파괴 후 구조적 거동을 받는데 금속보강재비가 0.251% 이하로 설계되면 구조적 거동은 발생하지 않으며, 0.5% 이상이면 구조적 보강은 이루어지나 모재의 2차 훼손을 유발시킨다. 따라서 $1,500kgf/cm^2$ 강도를 갖는 석재의 적정 금속보강재비는 접착단면적의 0.283~0.377% 정도로 설계되어야 가역성 있는 파손과 보강재의 연성거동이 이루어진다. 또한 휨 하중에 대응되는 금속봉의 최대 응력을 기대하기 위해서는 보강재 간격을 멀리하는 것보다 가깝게 유지하는 것이 효율적이며, 특히 상부에 보강재를 매입하는 것은 구조적으로 아무런 도움이 되지 못하고 오히려 원부재의 손상만 유발한다. 따라서 보강재는 하부에 집중배치하고 일부 중앙부에 매입하여야 안정적인 인장재 역할을 하면서 하중응력을 받는다. 금속봉의 분산효과는 보강봉의 면적에 영향을 받을 뿐 지름과는 무관하였다. 하지만 큰 규모를 대상으로 할 때는 접착 단면을 고려하여 보강재 개수를 늘려주는 것이 하중응력에 안정적이다. 이때 적용되는 정착길이는 보강재의 직경에 따라 다음과 같은 식($l_d=a_tf_y/u{\Sigma}_0$)에 의거하여 설계한다. 또한 구조재로서 거동을 하기 위해서는 반드시 마디가 있는 전산형 보강봉을 사용하여야 한다.