• Title/Summary/Keyword: dispersion correction techniques.

Search Result 5, Processing Time 0.021 seconds

Numerical Dispersion and Its Control for 1-D Finite Element Simulation of Stress Wave Propagation (응력파 전파 수치모의를 위한 일차원 유한요소모형의 분산 특성 및 제어)

  • 이종세;유한규;윤성범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • With an aim at eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based one-dimensional finite element model are analyzed and some dispersion control scheme are proposed in this paper The dispersion analyses are carried out for two types of mass matrix, namely the consistent and the lumped mass matrices. Based on the finding of the analyses, dispersion correction techniques are developed for both the implicit and explicit schemes. For the implicit scheme, either the weighting factor for the spatial derivatives of each time level or the lumping coefficient for mass matrix is adjusted to minimize the numerical dispersion. In the case of the explicit scheme an artificial dispersion term is introduced in the governing equation. The validity of the dispersion correction techniques proposed in this study is demonstrated by comparing the numerical solutions obtained using the Present techniques with the analytical ones.

Dispersion-corrected Finite Element Method for the Stress Wave Propagation (응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구)

  • Hwang, In-Ho;Choi, Don-Hee;Hong, Sang-Hyun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF

Integral Field Spectroscopic Data Reduction Method for High Resolution Infrared Observation

  • Lee, Sung-Ho;Pak, Soo-Jong;Choi, Min-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.309-318
    • /
    • 2010
  • We introduce a technical approach for reducing three-dimensional infrared (IR) spectroscopic data generated by integral field spectroscopy or slit-scanning observations. The first part of data reduction using IRAF presents a guideline for processing spectral images from long-slit IR spectroscopy. Multichannel image reconstruction, Image Analysis and Display (MIRIAD) is used in the later part to construct and analyze the data cubes which contain spatial and kinematic information of the objects. This technic has been applied to a sample data set of diffuse 2.1218 ${\mu}m$ $H_2$ 1-0 S(1) emission features observed by slit-scanning around Sgr A East in the Galactic center. Details of image processing for the high-dispersion infrared data are described to suggest a sequence of contamination cleaning and distortion correction. Practical solutions for handling data cubes are presented for survey observations with various configurations of slit positioning.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.