• 제목/요약/키워드: dispersed particle size

검색결과 251건 처리시간 0.024초

The Effect of Solvents on Sold Dispersion of Ipriflavone with Polyvinylpyrrolidone In Vivo

  • Jeong, Je-Kyo;Ahn, Yong-San;Moon, Byung-Kwan;Choi, Myung-Kyu;Khang, Gil-Son;Rhee, John-M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권1호
    • /
    • pp.1-5
    • /
    • 2005
  • ABSTRACT -Ipriflavone is a synthetic flavonoid derivate that improves osteoblast cell activity inhibiting bone resorption. In order to improve the bioavailability, solid dispersions of ipriflavone with PVP (poly-N-vinylpyrrolidone, MW=40,000 g/mole) were prepared by a spray-drying method. During the manufacturing of solid dispersion, various solvents [ethanol (EtOH), acetonitrile, methylene chloride and cosolvent-EtOH:acetone=1:1] were used to dissolve the ipriflavone and PVP. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to evaluate the physicochemical interaction between ipriflavone and PVP. Particle size, crystallinity and the area of the endotherm $({\Delta}H)$ of solid dispersed ipriflavone using the acetonitrile as solvent were much smaller than those of the other preparation types. Bioavailability of ipriflavone in vivo was changed by solvents. When considering the result of in vivo test, solid dispersion of ipriflavone using the acetonitrile as solvent showed the best choice.

Green Synthesis of Silver Nanoparticles Using Cell Extracts of Anabaena doliolum and Screening of Its Antibacterial and Antitumor Activity

  • Singh, Garvita;Babele, Piyoosh K.;Shahi, Shailesh K.;Sinha, Rajeshwar P.;Tyagi, Madhu B.;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1354-1367
    • /
    • 2014
  • In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEM-selected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag-CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

세리아 안정화 지르코니아의 제조 및 특성(I) : CeO2첨가량 변화에 따른 Ce-TZP의 기계적 특성 (Preparation and Characterization of Ceria Stabilized Tetragonal Zirconia Polycrystals(I) : Effect of CeO2 Contents on the Mechanical Properties of Ce-TZP)

  • 정승화;강종봉
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.379-384
    • /
    • 2010
  • The usual ceramic process of mixing and milling in state of oxides $ZrO_2$ and $CeO_2$ was adopted in this study in a wet process to manufacture Ce-TZP. $CeO_2$-$ZrO_2$ ceramics containing 8~20 mol% $CeO_2$ were made by heat treatment at $1250\sim1500^{\circ}C$ for 5hr. The maximum dispersion point of every slurry manufactured with a mixture of $ZrO_2$ and $CeO_2$ was neat at pH10. A stable slurry with average particle size of 90 nm can be manufactured when it is dispersed with the use of ammonia water and polycarboxylic acid ammonium. The sintered Ce-TZP ceramics manufactured with the addition of $CeO_2$ in a concentration of less than 10 mol% progressed to the fracture of the specimen due to the existence of a monoclinic phase of more than 30% at room temperature. More than 99% of the tetragonal phase was created for the sintered body with the addition of $CeO_2$ beyond 18 mol%, but the degradation of the mechanical properties on the entire specimen was brought about due to the $CeO_2$ existing in a percentage above 3%. Consequently, the optimal Ce-TZP level combined in the oxide state was identified to be 16 mol% of $CeO_2$ contents.

서브 마이크론급 구형 동분말의 볼 밀링을 통한 플레이크 동분말의 제조 (Fabrication of Cu Flakes by Ball Milling of Sub-micrometer Spherical Cu Particles)

  • 김지환;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.133-137
    • /
    • 2014
  • 직경 수 마이크론급의 Ag 코팅 Cu 플레이크를 제조하기 위한 선행공정으로 습식 화학적 합성법으로 제조된 서브마이크론급의 Cu 입자를 볼 밀링 공정을 통해 프레이크화 하였다. 입자들의 산화 및 응집을 막기 위해 볼 밀링 유체로는 에틸렌글리콜을 사용하였고, 에틸아세테이트 표면개질제도 첨가하였다. 용기의 회전수에 따른 실험 결과를 통해 회전수에 따른 회전 모드의 변화가 밀링 후 Cu 입자들의 평균적인 형상과 형상 균일도를 크게 변화시킴을 확인할 수 있었다. 또한 첨가한 지르코니아 볼의 직경 역시 Cu 입자들의 플레이크화 균일도를 결정하는 대표 공정변수임을 확인할 수 있었다. 그 결과 다소간의 응집체를 포함한 서브마이크론급의 Cu 입자를 사용했음에도 불구하고, 회전수, 표면개질제 첨가량, 그리고 지르코니아 볼의 직경 등의 대표 공정변수들을 최적화한 볼 밀링 공정을 통해 분산성이 우수한 수 마이크론급의 Cu 플레이크를 성공적으로 제조할 수 있었다.

Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.253-257
    • /
    • 2016
  • We added 0 ~ 5 wt% $YBO_3:Eu^{3+}$ nano powders in a scattering layer of a working electrode to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). FESEM and XRD were used to characterize the microstructure and phase. PL and micro Raman were used to determine the fluorescence and the composition of $YBO_3:Eu^{3+}$ phosphor. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with $YBO_3:Eu^{3+}$. From the results of the microstructure and phase of the fabricated $YBO_3:Eu^{3+}$ nano powders, we identified $YBO_3:Eu^{3+}$ having particle size less than 100 nm. Based on the microstructure and micro Raman results, we confirmed the existence of $YBO_3:Eu^{3+}$ in the scattering layer and found that it was dispersed uniformly. Through photovoltaic properties results, the maximum ECE was shown to be 5.20%, which can be compared to the value of 5.00% without $YBO_3:Eu^{3+}$. As these results are derived from conversion of light in the UV range into visible light by employing $YBO_3:Eu^{3+}$ in the scattering layer, these indicate that the ECE of a DSSC can be enhanced by employing an appropriate amount of $YBO_3:Eu^{3+}$.

메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구 (Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release)

  • 전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제17권3호
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF

부유부상 공정에 있어서 표면 에너지의 역할 - 부유부상 효율에 있어 고형 입자의 표면 에너지 및 극성성분의 중요성 - (Influence of the Surface Energetics on flotation Process - Importance of the Surface Energy and Polarity of Solid Particles in Flotation Efficiency -)

  • 이학래;박일;이용민;이진희;조중연;한신호
    • 펄프종이기술
    • /
    • 제34권3호
    • /
    • pp.1-8
    • /
    • 2002
  • The object of this study was to determine the surface energy of hydrophobically modified micro-crystalline cellulose (MCC) with AKD and evaluate the effect of surface energy of the solid particles dispersed in aqueous medium on flotation efficiency. Especially to eliminate the complication derives from the diverse parameters of solid particles including particle size, type, etc. MCC's modified with AKD have been used. The surface energy Parameters were calculated from advancing contact angles of apolar and polar liquids on MCC pellets using the Lifshitz-van der Waals acid-base (LW:AB) approach. Total surface energy of hydrophobic MCC ranged from 46.19 mN/m to 48.60 mN/m. The contribution of the acid-base components to the total surface energy ranged form 13% to 17% for hydrophobic MCC's. The effect of surface characteristics on the flotation efficiency was evaluated. It was shown that there exist critical values of surface energies to increase flotation efficiency. Total surface energy and polar component of solid particles should be lower than 47 mN/m and 7 mN/m, respectively, for effective removal in the flotation process.

비수계 분산중합을 이용한 환경친화적 아크릴수지의 합성 (Polymerization of Environmentally Friendly Acrylic Resin by Non-Aqueous Dispersion)

  • 오대근;김정호
    • 청정기술
    • /
    • 제13권3호
    • /
    • pp.208-214
    • /
    • 2007
  • 본 연구에서는 비수계 분산중합(NAD)을 이용하여 $0.1\;{\mu}m$에서 $1\;{\mu}m$ 크기의 입자를 가지는 환경친화적인 아크릴 수지를 제조하였다. 1 단계에서 안정제를 제조한 후 2 단계에서 안정제에 아크릴 단량체를 투입하여 NAD수지를 제조하였다. 적정 점도의 NAD수지를 합성하려면 안정제도 1000 cP 이상의 점도를 가진 것을 사용하여야 하는 것으로 나타났고 이를 위해서는 안정제 중합 시 단량체와 개시제를 단계적으로 투입하는 것이 필요한 것으로 관찰되었다. 또한 NAD수지 중합시 안정제의 양은 적정량을 투입하는 것이 필요하고 적정량 이상에서는 더 이상 NAD수지의 점도가 증가하지 않는 것으로 나타났다. 중합 단량체의 조성 선택 시에도 용해도 상수 차이 등의 요인으로 입도분포가 두 가지로 나올 수 있으므로 이를 고려하여 단량체를 투입하여야 하는 것으로 관찰되었다.

  • PDF

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.

액상환원법(液相還元法)에 의한 백금(白金) 나노분말(粉末) 제조(製造) (Preparation of Nano-sized Pt Powders by Solution-phase Reduction)

  • 김철주;윤호성;조성욱;손정수
    • 자원리싸이클링
    • /
    • 제16권5호
    • /
    • pp.36-40
    • /
    • 2007
  • 백금은 물리화학적 특성에 기인하여 많은 분야에서 중요한 역할을 하고 있으며, 이러한 분야에서는 아주 미세한 백금의 사용을 요구하고 있다. 그러므로 본 연구에서는 액상에서 환원제를 사용하여 백금염을 환원시킴으로서 나노크기의 백금을 제조하는 방법에 대하여 알아보았다. 수용액상에서 C14TABr과 $H_2[PtCl_6]$ 상호작용은 $[C1_4TA]_2[PtCl_6]$의 유기백금염 화합물을 형성한다. 단분산 나노 백금입자를 얻기 위해서는 $C1_4TABr$$H_2[PtCl_6]$ 농도가 각각 cmc와 0.32 mM 이상이 되어야 한다. $H_2[PtCl_6]$와 C14TABr 농도가 증가함에 따라 백금입자 크기가 증가하였으며, 백금입자의 형태는 C14RABr농도 증가에 따라 제어가 가능하였다.