• Title/Summary/Keyword: disperse blue

Search Result 46, Processing Time 0.017 seconds

The Dyeing Properties of Poly(trimethylene terephthalate) by Disperse Dyes with Different Energy Level (Energy Level이 다른 분산염료를 이용한 Poly(trimethylene terephthalate)섬유의 염색성)

  • 백지연;김정렬;이난형;윤태희;김삼수
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.316-320
    • /
    • 2003
  • In order to investigate the dyeing property of poly trimethylene terephthalate(PTT) fabric, the dyeing of PTT fabric was carried at under condition of different dyeing temperature by using several disperse dyes with different energy level. Particularly, this study discussed the PTT dyeing thermodynamically. Used disperse dyes were selected based on the their chemical structure and energy level. The obtained results were as followings; The dye adsorption of S type disperse dye such as C. I. Disperse Blue 79 increased with increasing dyeing temperature. In a exhaustion rate of PTT fabric with disperse dyes, C. I. Disperse Blue 56 showed higher values than that of C. I. Disperse Orange 29 and Blue 79. For the interpretation of thermodynamic dyeing behavior, the partition coefficient ( K ) and some several thermodynamic parameters such as standard affinity$(-\mu^\circ)$ and heat of dyeing$(\Delta{H}^\circ)$ calculated from the adsorption isotherm. From above results, as the energy level of disperse dye is small, the partition coefficient and standard affinity increased. But the heat of dyeing of PTT fabric with disperse dye showed high negative value in order of E type(C. I. Disperse Blue 56), SE type(C. I. Disperse Orange 29) and S type(C. I. Disperse 79).

High Fastness Dyeing Technology of Polyester Microfiber with Several Disperse Dyes and Vat dye (수종의 분산 염료 및 환원염료에 의한 Polyester microfiber의 고견뢰 염색기술)

  • 백진주;권오대;손아름;이난형;김삼수
    • Textile Coloration and Finishing
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • Polyester microfiber has usually greater dye uptake than normal denier polyester fiber in same dyeing condition. In spite of this high dye uptake dyed microfiber fabric has not only low visual colour depth but also poor washing fastness property. In order to study high colouring dyeing technology and high washing fastness of polyester microfiber, dyeing property of polyester microfiber was investigated according to the dye solubility and particle size of used disperse dyes in aqueous dye solution. After disperse dyeing, dyed fabric with disperse dye was redyed with a vat dye without reduction clearing in order to obtain a high washing fastness property. The result were as followings ; A small particle sized disperse dyes such as C. I. Disperse Blue 56 and Red 60 showed high rate of initial exhaution compared with a large particle sized disperse dyes like C. I. Disperse Blue 165 and Red 343. In study of dyeing property of polyester microfiber with C. I. Vat Blue 1, polyester microfiber could achieve high dye uptake at a given optimum vatting process conditions. On the other hand, in consecutive dyeing with disperse and vat dye, K/S value of polyester microfiber with a small particle sized disperse dye increased without reduction clearings, but K/S value of polyester microfiber with a large particle sized disperse dye decreased with reduction clearings.

One Bath Dyeing of Silk/Synthetic Fibre Blends(IV) - Adsorption Behavior of Acid Dyes/Disperse Dyes on Silk/Acetate - (견/합성섬유 혼방품의 일욕염색(IV) - 산성염료/분산염료 염욕에서의 견/아세테이트의 염착거동 -)

  • 박미라;전재홍;강영의;김공주
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.8-18
    • /
    • 1994
  • In one bath dyeing system of silk/cellulose acetate fiber blend fabric with acid /disperse dyes, adsorption behavior of acid dyes and disperse dyes on silk and cellulose acetate fabrics were examined. In the dyeing of cellulose acetate with C. I. Disperse Red 19(Red 19) and C. I. Disperse Red 60(Red 60) at 8$0^{\circ}C$ and 10$0^{\circ}C$, dye uptake with Red 19 was higher than that with Red 60. When the silk/cellulose acetate dyed with Red 19 and Red 60 at 10$0^{\circ}C$, dye uptake on cellulose acetate was influenced by affinity of the dye to the silk fabric dyed together. When the silk/cellulose acetate dyed with Blue 80/Red 19 and Blue 80/Red 60 at 10$0^{\circ}C$, color of cellulose acetate dyed with Red 19 and Red 60 was not influenced by Blue 80 but silk dyed with Blue 80 was influenced by Red 19 and Red 60. Interrelation of K/S value and Munsell value was scarcely any but showed the change tendency of K/S value.

  • PDF

A Study on the Decomposition Properties of Disperse Dye Ozone Oxidation Treatment and the Optimum Treatment Condition(I) (Ozone 산화처리에 의한 분산염료의 분해성 및 최적처리조건에 관한 연구)

  • Kim, Sam Soo;Huh, Man Woo;Han, Myung Ho;Yoon, Jong Ho;Cho, Hwan;Kim, Dong Kwon
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.43-55
    • /
    • 1996
  • When some disperse dye was decolored with oxidation power of ozone, the results in investigation of decoloration behavior with dye solution and its order of reaction and variation of TOC were as follow: 1. Order of decoloration for Some disperse dye is C.I. Disperse Blue 79>Blue 73> Red 343>Red 60>Blue 354>Yellow 42. 2. Velocity of decoloration for the all dyestuffs was the fastest when pH 3. 3. TOC was rapidly reduced between 10 min. and 20 min. 4. For the reduction of TOC ozone was needs many times as compared with decoloration of dyestuffs.

  • PDF

The Dyeing Behavior of PET Bulky Yarn with Disperse Dyes (분산염료에 의한 폴리에스터 Bulky Yarn의 염색거동)

  • Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • The dyeing behaviors of poly(ethylene terephthalate)(PET) bulky yarns, DTY(draw textured yarn) and SSY(latent crimped yarn), were investigated with different energy type disperse dyes compared with those of SDY(spin draw yarn). The maximum exhaustions of E-type disperse Red 60, Blue 56 and Yellow 54 on SSY were 99%, 94% and 93%, respectively. The maximum exhaustions of S-type disperse Red 179, Blue 79 and Orange 30 on SSY were 96%, 97% and 97%, respectively. The K/S values of SSY were significantly higher than those of DTY and SDY in all energy type of disperse dyes. The knit fabric composed of SSY became bulky at the end of high temperature dyeing process because of their thermal shrinkage property due to melt viscosity difference.

Synthesis and Application of Color Depth Black Disperse Dyes for PET Fabric (PET 직물용 심색성 분산염료의 합성과 Black 염색)

  • Kim, Hye-Jin;Kim, Jae-Ho;Kim, Dong-Uk;Hong, Seung-Pyo;Kim, Sang-Jin;Kim, Hee-Dong;Kim, Hyun-Ah;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.290-296
    • /
    • 2014
  • In order to produce black disperse dye which has high heat resistance and depth color for polyester(PET), an orange disperse dye was designed and synthesized with pyridine based derivatives to get high heat resistance. Disperse blue dye adopts heterocycles structure for high molar extinction coefficient and long wavelength absorption. Synthesized disperse dye is micronized to an particle size of $0.7{\mu}m$. The mixing condition for black color using commercial disperse violet 93 is blue dye 30%, red dye 21%, and orange dye 21%, respectively. Dyed PET fabric with synthesized dye has quiet good color fastness to sublimation(grade 3-4) and has excellent rubbing, washing and light fastness grade 4-5.

Preparation and Characterization of Stretch Fabric : Dyeing Properties of Core Yarn and Effect Yarn (신축성사 개발 및 물성평가 : 코어(core)사와 장식(effect)사간의 동색성 및 염색성 평가)

  • Kang, Ki-Hyuk;Kim, Young-Sung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In this study, we investigated the clean appearance and good stretch properties. Usually, clean appearance concerned with the dyeing properties of core and effect yarns. The dyeing properties between core yarn (conjugate yarn) and effect yarn were determined by the build-up and the color differences using the four different yarns of SDY FD(spindraw yarn full dull), SDY CD(spindraw yarn cation dyeable), POY FD( partially-oriented yarn full dull) and POY CD(partially-oriented yarn cation dyeable). We used the single color dye of C. I. Disperse Blue 79 and mixed colors made by C. I. Disperse Red 60, C. I. Disperse Blue 56, and C. I. Disperse Yellow 54.

Dyeing Properties of Polyester Ultrarmicrofiber (초극세 폴리에스테르 섬유의 염색성)

  • 정동석;김호정;이문철
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • Polyester ultrarmcrofiber(UMF, fiber fineness : 0.05d) and the other three kinds of polyester fibers(0.52, 1.04 and 2.08d) were dyed with two disperse dyes, C.1. Disperse Red 60 and Blue 56. Dyeing rates and absorption isotherms of these dyes have been measured at 100, 115 and $130^\circ{C}$ in water system. The dye bath was maintained at pH 5.0 with acetic acid(0.1mo1/1) /sodium acetate(0.1mo1/1) buffers and a liquor ratio of 1000:1. The absorption isotherms from two disperse dyes are nearly linear up to the saturation values, which increase with the temperature of dyeing. Dye uptake decreased with the fiber fineness in lower temperature $100^\circ{C})$, whereas increased in higher temperature$(130^\circ{C})$. A comparatively greater quantity of dye is necessary to dye ultrarmcrofiber fabrics than conventional fabrics. Disperse Blue 56 having a good build-up property is agreed to Fothergill's equation, which is inversely varied with the fiber fineness by the quantity of dye necessary to obtain a given shade.

  • PDF

On Bath Dyeing of silk/synthetic Fibre Blends(III) ―Adsorption Behavior of Acid Dyes/Disperse Dyes on Silk/PET― (견/합성섬유 혼방품의 일욕염색(III) ―산성염료/분산염료 염욕에서의 견/PET의 염착거동―)

  • Gwag, In Jun;Yoon, Kyung Sup;Kim, Ae Soon;Kim, Gong Ju
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.67-78
    • /
    • 1993
  • In one bath dyeing system of silk/PET fiber blend fabric with acid/disperse dyes, adsorption behavior of disperse dyes and acid dyes on silk and PET fabrics were examined. In the dyeing of PET with C.I.Disperse Red 19(Red 19) and C.I.Disperse Red 60(Red 60) at 10$0^{\circ}C$(carrier dyeing) and 13$0^{\circ}C$, dye uptake with Red 60 was higher than that with Red 19. When the silk/PET dyed with Red 19 and Red 60 at 10$0^{\circ}C$(carrier dyeing) and 13$0^{\circ}C$, dye uptake on PET was influenced by affinity of the dye to the silk fabric dyed together. When the silk/PET dyed with Blue 80/Red 19 and Blue 80/Red 60 at 10$0^{\circ}C$(carrier dyeing) and 13$0^{\circ}C$ for 60 minutes, color of PET dyed with Red 19 and Red 60 was little influenced by Blue 80 but silk dyed with Blue 80 was influenced. Interrelation of K/S value and Munsell value was scarcely any but showed the change tendency of K/S value.

  • PDF

PET Dyeing in Black Shade with Disperse Dyes of Three Primary Color

  • Kim, Hae-Rim;Lee, Jung-Jin
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.27-34
    • /
    • 2009
  • PET fabric was dyed in black shade with disperse dyes of three primary color. The effect of combination ratio of dye concentration and energy type of disperse dye on dyeing and color property of black dyed PET fabric was investigated. Dyeing compatibility of disperse dyes of three primary color on PET was evaluated by comparison of dyeing rates of them. From the results, color property was dependent upon the combination ratio of dye concentration. In order to obtain low lightness ($L^*$) and black color, blue dye should be added enough. S-type disperse dye and $130^{\circ}C$ dyeing was suitable rather than SE-type dyes or $120^{\circ}C$ dyeing. Disperse dyes of three primary color used showed good dyeing compatibility at high dye concentration. Washfastness was fair to moderate and lightfastness was moderate.