• Title/Summary/Keyword: dispersant content

Search Result 34, Processing Time 0.019 seconds

Study on the Biodegradability of Dispersants and Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater(I) - The Biodegradability of Dispersants and the Dissolved Oxygen Consumption in the Seawater - (해수중에서 유처리제 및 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비에 관한 연구(I) - 유처리제의 생분해도와 용존산소소비 -)

  • KIM Gwang-Su;PARK Chung-Kil;YOU Sun-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.5
    • /
    • pp.493-501
    • /
    • 1993
  • As the dispersants and the dispersant/oil mixtures are degraded naturally by the microorganisms in the seawater, the consumption of dissolved oxygen may cause marine organisms to be damaged especially in the waters where the dissolved oxygen level is low due to the pollution and the restriction of seawater flow. The biodegradation experiment, the TOD analysis and the element analysis for three dispersants(SG, GL and WC) and a nonionic surfactant(OA-5) were conducted for the purposes of evaluating the biodegradability of dispersants and studying the effect of dispersants on dissolved oxygen in the seawater. The results of biodegradation experiment showed 1mg of dispersants to be equivalent to $0.403{\sim}0.595mg$ of $BOD_5$ and to $0.703{\sim}0.855mg$ of $BOD_{20}$, and 1mg of nonionic surfactant to be equivalent to 0.50mg of $BOD_5$ and to 0.97mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed 1mg of dispersants to be $2.37{\sim}2.80mg$ of TOD and 1mg of nonionic surfactant to be 2.45mg of TOD. The results of element analysis showed carbon content and hydrogen content to be $67.6{\sim}76.5\%$ and $10.2{\sim}12.2\%$ for dispersants, and $65.3\%$ and $10.3\%$ for nonionic surfactant, respectively. No nitrogen element was detected in dispersants and a nonionic surfactant. The biodegradability of dispersants shown as the ratio of $BOD_5/TOD$ was found to be in the range of $17{\sim}21\%$, and that of nonionic surfactant was found to be about $20\%$. This means that dispersants and nonionic surfactant belong in the organic matter group of middle-biodegradabilily. The deoxygenation rates($K_1$) and ultimate oxygen demands($L_o$) obtained through the biodegration experiment and Thomas slope method were found to be $0.121{\sim}0.171/day$ and $3.155{\sim}3.810mg/l$ for 4mg/l of dispersants and to be 0.181/day and 1.911mg/l for 2mg/l of nonionic surfactant in the seawater, respectively.

  • PDF

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles (고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화)

  • Kim, Ju-Young;Kim, Seung-Jin;Na, Jae-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.514-521
    • /
    • 2010
  • A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.

Optimum Condition of Soil Dispersion for Remediating Heavy Metal-Contaminated Soils using Wet Magnetic Separation (중금속 오염 토양 정화를 위한 습식자력선별법 사용 시 최적 토양분산 조건)

  • Chon, Chul-Min;Park, Jeong-Sik;Park, Sook-Hyun;Kim, Jae-Gon;Nam, In-Hyun
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2012
  • Soil dispersion and heavy metal leaching with two heavy metal-contaminated soils were studied to derive the optimal dispersion condition in the course of developing the remedial technology using magnetic separation. The dispersion solutions of pyrophosphate, hexametaphosphate, orthophosphate and sodium dodecylsulfate (SDS) at 1 - 200 mM and the pH of solutions was adjusted to be 9 - 12 with NaOH. The clay content of suspension as an indicator of dispersion rate and the heavy metal concentration of the solution were tested at the different pHs and concentrations of the dispersion solution during the experiment. The dispersion rate increased with increasing the pH and dispersion agent concentration of the solution. The dispersion efficiency of the agents showed as follows: pyrophosphate > hexametaphosphate > SDS > orthophosphate. Arsenic leaching was sharply increased at 50 mM of phosphates and 100 mM of SDS. The adsorption of $OH^-$, phosphates and dodecysulfate on the surface of Fe- and Mn-oxides and soil organic matter and the broken edge of clay mineral might decrease the surface charge and might increase the repulsion force among soil particles. The competition between arsenic and $OH^-$, phosphates and dodecylsulfate for the adsorption site of soil particles might induce the arsenic leaching. The dispersion and heavy metal leaching data indicate that pH 11 and 10 mM pyrophosphate is the optimum dispersion solution for maximizing dispersion and minimizing heavy metal leaching.