• Title/Summary/Keyword: disks

Search Result 911, Processing Time 0.026 seconds

Semi-finite Element Analysis of Rotating Disks Reinforced at Rim (테두리가 보강된 회전 원판의 반-유한요소해석)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2009
  • In order to increase the critical speed of rotating disks of which functional material could not be changed such as in optical and magnetic data storage disks, a new disk with a rim reinforced by composite material is proposed and its concept is verified by numerical analysis. Stress distributions are found for the rotating disk composed of two annular disks of which materials are isotropic inside and orthotropic outside. Dynamic equation is formulated in order to calculate the natural frequency and critical speed. For the solution of lateral vibration, a rotational symmertry condition is applied along circumferential direction and a finite element interpolation with Hermite polynomial is performed along the radial direction to obtain a proper solution. According to the results, reinforcing a disk at rim makes critical speeds drastically increased, and induces a buckling phenomenon in mode (0,0) which occurs over the lowest critical speed.

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 -)

  • Lim, Hyo-Suk;Yim, Vit;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

Production and Exudation of Botryosphaeria dothidea conidia Using Cucumber Disks and Cereal Media (오이 절편과 배지를 이용한 Botryosphaeria dothidea 분생포자의 생성과 분출)

  • 김기우;박은우
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 1998
  • A method for inoculum production of Botryosphaerisa dothidea was developed using cucumber disks and cereal media. Disks of cucumber fruits, and cereal media of barley, wheat, and rice seeds were inoculated with mycelial plugs of B. dothidea and incubated at 27$^{\circ}C$. Pycnidia were produced on the surface of cucumber disks and seeds after 5 days of inoculation. When the inoculated barley seeds were immersed in sterilized distilled water for 5 minutes, abundant conidia of B. dothidea were exuded from mature pycnidia. Conidia were held together by mucilage as they were released from an ostiole. Compared with the conventional method for inoculum preparation using agar media, such as potato-dextrose agar and oatmeal agar, this method could minimize the tedious work required for inoculum preparation within a shorter period of time.

  • PDF

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

An Experimental Study on Inner Flow between Shrouded Corotating Disks (밀폐된 동시회전원판 내부유동에 관한 실험적 연구)

  • Yu, Seung-Chul;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.637-643
    • /
    • 2000
  • The shrouded corotating disk flow has a simple figure on geometric basis, but has various and complicated forms of flow. this complicated flows can be variously applied to not only information storage device, but also turbomachinery which is greatly influenced by centrifugal force. This study measured its velocity to measure inner flow field with unique flow field univluenced, using LDV and subminiature hot-wire. The result of experiment shows that distribution limits of solid body rotation region, dimensionless velocity gradient and distribution limits of disk surface boundary layer(Ekman layer) are changed by the gap of disks and rotating speed. Circulating vortex which is near the shroud is effected by the gap of disks and rotating speed.

  • PDF

2.5 Inch HDD Spindle Vibration with Flexible Base Plate

  • Heo, Bae-Kho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.210-214
    • /
    • 2005
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, Because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF

Vibration Characteristics of CD and DVD Disks (CD 및 DVD 디스크의 진동 특성)

  • 이승엽;임효석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.998-1003
    • /
    • 2003
  • The aerodynamically excited vibration and natural frequency of rotating CD and DVD disks are analytically and experimentally studied in this paper The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping components. The explicit expression on natural frequency of the air coupled disk is obtained as functions of the three aerodynamic coefficients. The experiments performed using a vacuum chamber and CD/DVD disks rotating in vacuum, open air and enclosure give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF

Multidisk data allocation method based on genetic algorithm (유전자 알고리즘을 이용한 다중 디스크 데이터 배치 방식)

  • 안대영;박규호;임기욱
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.46-58
    • /
    • 1998
  • Multi-disk data allocation problem examined in this paper is to find a method to distribute a Binary Cartesian Product File on multiple disks to maximize parallel disk I/O accesses for partial match retrieval. This problem is known to be NP-hard, and heuristkc approaches have been applied to obtain sub-optimal solutions. Recently, efficient methods have been proposed with a restriction that the number of disks in which files are stored should be power of 2. In this paper, we propose a new disk Allocation method based on Genetic Algorithm(GA) to remove the restriction on the number of disks to be applied. Using the schema theory, we prove that our method can find a near-optimal solutionwith high probability. We compare the quality of solution derived by our method with General Disk Modulo, Binary Disk Modulo, and Error Correcting Code methods through the simulation. The simulation results show that proposed GA is superior to GDM method in all cases and provides comparable performance to the BDM method which has a restriction on the number of disks.

  • PDF

2.5 Inch HDD Spindle Vibration with a Flexible Base Plate

  • Heo, Baek-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF