• Title/Summary/Keyword: disk bearing

Search Result 227, Processing Time 0.021 seconds

Disk Vibration Suppression with Air Bearing Concept (공기 베어링 개념을 이용한 디스크 진동 저감 연구)

  • 최의곤;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.129-137
    • /
    • 2001
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue. In this work, we propose a simple inclined air bearing(20mm${\times}$20mm) system which is positioned very near to the rotating disk especially compact disc(CD) as a flexible disk, and we investigate suppressing effect about disk mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of bearing and apply to the disk vibration. The results show about 10 percent errors comparing to the experimental results. Also we investigate experimentally the reduction of disk vibration and power consumption with two different kinds of inclined bearing for normal disk drive system, which has tray and cover. We find inclined air bearing can decrease about 30 percents of the original disk vibration amplitude.

  • PDF

Disk Vibration Suppression with Air Bearing Concept (공기 베어링 개념을 이용한 디스크 진동 저감 연구)

  • 최의곤;임윤철
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2004
  • As the rotational speed and the track density are increased, the vibration of disk/spindle system becomes critical issue in order to reduce the track mis-registration. In this work, we propose a simple inclined air bearing (20${\times}$20 mm) system which is located very near to the rotating poly-carbonate disk, and investigate suppressing effect for the disk vibration mode (0,0) both experimentally and numerically. We find dynamic stiffness and damping coefficients of air bearing and then apply those values to the disk vibration analysis. Numerical results show about 10 percent difference comparing to the experimental results. Also we investigate the reduction of disk vibration and power consumption with two different kinds of inclined bearing for the normal disk drive system experimentally. We find inclined air bearing can reduce about 30 percents of the transverse disk vibration.

Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept (고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석)

  • Lee Sung-ho;Rhim Yoon-chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

Experimental Characterization of Hydrodynamic Bearing Spindle Motor for High Performance Hard Disk Drive (고성능 하드 디스크 드라이브 개발을 위한 유체베어링 스핀들 모터의 특성분석(현장개발사례: SAMSUNG HDD ′SPINPOINT POLARIS SERIES′))

  • Son, Young;Hwang, Tae-Yeon;Han, Tun-Sik;Kang, Seong-Woo;Morris, Frank
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.930-935
    • /
    • 2001
  • The experimental characterization of hydrodynamic bearing spindle motor is performed for the practical implementation of high-performance hard disk drive system. Firstly, the design concept of hydrodynamic bearing for the disk drive system is addressed including the herringbone grooved journal bearing, the spiral grooved thrust bearing, capillary seal design, and the viscous pumping of fluid. Secondly, the experimental evaluation is performed for the disk drive system in which the hydrodynamic bearing spindle motor is implemented and its dynamic performances are compared with conventional ball-bearing spindle motor. The key parameters include NRRO(Non Repeatable Run-Out), disk dynamics, acoustics, and resultant PES (Position Error Signal). Finally, the external gyro-exciting test results including 200k CSS(Continuous Start-Stop) on three angular attitudes(0,90, 180 degree) are presented in order to verify the practical reliability of disk drive system subject to the gyro-motion of hydrodynamic bearing spindle motor.

  • PDF

Static and Dynamic Behavior of Disk Bearings under Railway Vehicle Loading (철도차량하중에 의한 디스크받침의 정·동적 거동특성)

  • Oh, Saeh Wan;Choi, Eun Soo;Jung, Hie Young;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.469-480
    • /
    • 2006
  • The goal of this study is to ases the static and dynamic behavior of disk bearings under railway vehicle loadings. Several static tests were conducted in a laboratory t bearings, all having the same kind of polyurethane disk as used in the static tests, were installed under a full-sized railway bridge and tested with a running locomotive, the tests results, the static and dynamic stiffness of the disk bearings were estimated and compared. the deformation of the disk bearings under the bridge was measured at varying disk bearing was almost half of that under dynamic loading. In addition, the dynamic stiffness of the fixed disk bearing was 80% higher than that of an expansion disk bearing, since the PTFE in the expansion bearing is displaced. The deformation of the disk bearing did not vary significantly with changes in locomotive's speed. The results of this study can contribute to fast-tracking the formulation of a design technique for disk bearings for railway bridges.

Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing (전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure (회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석)

  • Seo, Chan-Hee;Jang, Gun-Hee;Lee, Ho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

Behavior of Bridge Bearings for Railway Bridges under Running Vehicle

  • Choi, Eun-Soo;Yu, Wan-Dong;Kim, Jin-Ho;Park, Sun-Hee
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.10-21
    • /
    • 2012
  • Open steel plate girder (OPSG) bridges are the most prevalent railroad bridge type in Korea, constituting about 40% of all railroad bridges. Solid steel bearings, known as line type bearings, are placed in most OSPG railway bridges. However, the line type rigid bearings generate several problems with the bridge's dynamic behavior and maintenance in service. To compare and investigate the dynamic behaviors of line type, spherical and disk bearings, the vertical displacements of each bearing, including fixed and expansion type, under running vehicles are measured and analyzed. The displacements of disk and spherical bearings are measured after replacing the line type bearings with spherical and disk bearings. This study also analyzed dynamic behaviors of bridges. Furthermore, the deformation of the PTFE (Polytetrafluoroethylene) plate that is placed inside of expansion type spherical and disk bearings is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated, and the relationship to the vertical displacement is discussed.

Reduction of Disk Vibration and PES Using a Disk Damper (HDD의 DISK 진동감쇠 및 PES 저감을 위한 Disk Damper의 설계와 그 해석)

  • 권정민;강성우;한윤식;황태연;구자춘
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • High speed rotating airflow inside a HDD chamber causes sub-micron scale disk vibration that could generate significant TMR problems in most of current HDD products. Many publications are presented for the reduction of airflow excitation. One of the most effective methods widely adopted in high-end HDD products is SqueezeAir Bearing Plate (SABP). However, because of its tight assembly clearance between the damper and disk, this method could not be easily implemented in volume production. This article presents a disk damper design that is modified to be feasible for volume production by virtue of a new airflow modeling method.