• Title/Summary/Keyword: disease susceptibility

Search Result 596, Processing Time 0.034 seconds

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.

Association of MDR1 Gene Polymorphisms with Susceptibility to Hepatocellular Carcinoma in the Chinese Population

  • Ren, Yong-Qiang;Han, Ju-Qiang;Cao, Jian-Biao;Li, Shao-Xiang;Fan, Gong-Ren
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5451-5454
    • /
    • 2012
  • Objective: The objective of this study was to evaluate the association of MDR1 gene polymorphisms with susceptibility to hepatocellular carcinoma (HCC). Methods: A total of 689 HCC patients and 680 cancer-free subjects were enrolled. Human MDR1 gene polymorphisms were investigated by created restriction site-polymerase chain reaction (CRS-PCR) and DNA sequencing methods. Multiple logistic regression models were applied to estimate the association between MDR1 gene polymorphisms and susceptibility to HCC. Results: We detected a novel c.4125A>C polymorphism and our findings suggested that this variant was significantly associated with susceptibility to HCC. A significantly increased susceptibility to HCC was noted in the homozygote comparison (CC versus AA: OR=1.621, 95% CI 1.143-2.300, ${\chi}^2$=7.4095, P=0.0065), recessive model (CC versus AC+AA: OR=1.625, 95% CI 1.167-2.264, ${\chi}^2$=8.3544, P=0.0039) and allele contrast (C versus A: OR=1.185, 95% CI 1.011-1.389, ${\chi}^2$=4.4046, P=0.0358). However, no significant increase was observed in the heterozygote comparison (AC versus AA: OR=0.995, 95% CI 0.794-1.248, ${\chi}^2$=0.0017, P=0.9672) and dominant model (CC+AC versus AA: OR=1.106, 95% CI 0.894-1.369, ${\chi}^2$=0.8560, P=0.3549). Conclusions: These findings suggest that the c.4125A>C polymorphism of the MDR1 gene might contribute to susceptibility to HCC in the Chinese population. Further work will be necessary to clarify the relationship between the c.4125A>C polymorphism and susceptibility to HCC on larger populations of diverse ethnicity.

Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease

  • Jeon, Junhyun
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.103-107
    • /
    • 2019
  • Roles of nutrients in controlling plant diseases have been documented for a long time. Among the nutrients having impact on susceptibility/resistance to crop diseases, nitrogen is one of the most important nutrients for plant growth and development. In rice plants, excess nitrogen via fertilization in agricultural systems is known to increase susceptibility to the rice blast disease. Mechanisms underlying such phenomenon, despite its implication in yield and sustainable agriculture, have not been fully elucidated yet. A few research efforts attempted to link nitrogen-induced susceptibility to concomitant changes in rice plant and rice blast fungus in response to excess nitrogen. However, recent studies focusing on phytobiome are offering new insights into effects of nitrogen on interaction between plants and pathogens. In this review, I will first briefly describe importance of nitrogen as a key nutrient for plants and what changes excess nitrogen can bring about in rice and the fungal pathogen. Next, I will highlight some of the recent phytobiome studies relevant to nitrogen utilization and immunity of plants. Finally, I propose the hypothesis that changes in phytobiome upon excessive nitrogen fertilization contribute to nitrogen-induced susceptibility, and discuss empirical evidences that are needed to support the hypothesis.

Application of water-soluble tetrazolium salt for development of rapid antimicrobial susceptibility testing methods (신속한 항생제 감수성 테스트 법의 개발을 위한 Water-Soluble Tetrazolium Salt의 적용)

  • Hwang, Seong Don;Jo, Dong Hee;Kim, Gwang-Il;Cho, Mi Young;Jee, Bo Young;Park, Myoung-Ae;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2015
  • In this study, we conducted to the development of a rapid antimicrobial susceptibility test method using WST-1 which is known to water-soluble tetrazolium salt, in order to rapidly response against bacterial diseases in fish. Eight of antibiotics which are permissioned for marine organism from government were used to rapid antimicrobial susceptibility testing using the WST-1. As a result, a similar tendency was verified compare to conventional antibiotic susceptibility test results. Generally, the antibiotic susceptibility test method required about 3 days (72 hours) for determine the effective antibiotics, however, we have confirmed that the our method using WST-1 was required at least 36 hours in this study. Consequentially, our method will contribute to development of rapid antimicrobial susceptibility testing for bacterial diseases in fish.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.

EVALUATION OF DISEASE RESISTANCE AND SUSCEPTIBILITY TO CHESTNUT BLIGHT FUNGUS, CRYPHONECTRIA PARASITTCA, OF CHESTNUT VARIETIES IN KOREA

  • Lee, Sang-Hyun;Hwang, Myung-Soo;Kim, Kyung-Hee;Lee, Jong-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.69.2-70
    • /
    • 2003
  • For the selection and breeding of chestnut varieties resistant to the chestnut blight fungus Cryphonectria parasitica, disease resistance and susceptibility of 28 varieties widely planted and growing in Korea were evaluated by artificial inoculation of a pathogenic fungus. For this experiment, a typical virulent strain (KCPC-19) was selected. Artificial inoculation was conducted into all varieties by using two different materials and methods, i.e., bark and wood tissue sections in the laboratory and living trees in the field. In the bark and wood tissue section method, the size of necrotic area and canker development on chestnut varieties were examined and compared 4 days after inoculation. There were wide variations of chestnut varieties in disease resistance and susceptibility against chestnut blight fungus, but 3 varieties, Daebo!, Ishizuchi, and Sandae, were shown to be relatively resistant to the disease with the necrotic area of 0.95-1.03 cm2, while Arima was the most susceptible with the size of 2.0 cm2. In the living tree inoculation examined 5 weeks after inoculation, 3 varieties, Daebo, Ishizuchi, and Riheiguri, showed the higher resistance, but Tono 2 did the highest susceptibility among tested varieties.

  • PDF

Association study between OCTN1 functional haplotypes and Crohn's disease in a Korean population

  • Jung, Eun Suk;Park, Hyo Jin;Kong, Kyoung Ae;Choi, Ji Ha;Cheon, Jae Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • Crohn's disease (CD) is a chronic inflammatory bowel disease with multifactorial causes including environmental and genetic factors. Several studies have demonstrated that the organic cation/carnitine transporter 1 (OCTN1) non-synonymous variant L503F is associated with susceptibility to CD. However, it was reported that L503F is absent in Asian populations. Previously, we identified and functionally characterized genetic variants of the OCTN1 promoter region in Koreans. In that study, four variants demonstrated significant changes in promoter activity. In the present study, we determined whether four functional variants of the OCTN1 promoter play a role in the susceptibility to or clinical course of CD in Koreans. To examine it, the frequencies of the four variants of the OCTN1 promoter were determined by genotyping using DNA samples from 194 patients with CD and 287 healthy controls. Then, associations between genetic variants and the susceptibility to CD or clinical course of CD were evaluated. We found that susceptibility to CD was not associated with OCTN1 functional promoter variants or haplotypes showing altered promoter activities in in vitro assays. However, OCTN1 functional promoter haplotypes showing decreased promoter activities were significantly associated with a penetrating behavior in CD patients (HR=2.428, p=0.009). Our results suggest that the OCTN1 functional promoter haplotypes can influence the CD phenotype, although these might not be associated with susceptibility to this disease.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

THE SUSCEPTIBILITY OF SCALELESS MUTANT CHICKENS TO VERY VIRULENT MAREK'S DISEASE VIRUS

  • Lin, J.A.;Liu Tai, J.J.;Lu, Y.S.;Liou, P.P.;Tai, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.679-684
    • /
    • 1996
  • This study evaluates the susceptibility of scaleless mutant chickens to very virulent Marek's disease virus (vvMDV) inoculation. One day old chickens were inoculated subcutaneously with Taiwanese isolates of LTB-1 and LTS-1 strains, and standard strain of Md/5. Compared with the non-inoculated group the vvMDV-inoculated chickens showed decreased body weights and atrophy of lymphoid organs before 35 days old. These results indicate that scaleless chickens show the same susceptibility as the wild type chickens to vvMDV infection. Furthermore, the protective effect of herpesvirus of turkey (HVT) vaccination at 1 day old against vvMDV challenge was evaluated. Scaleless mutant chickens of treated groups showed 20-30% early death, and 85.7-100% and 12.5-14.2% had lymphomatous lesions in visceral organs and peripheral nerves, respectively. No significant lesions were observed in non-challenged chickens of the control group. The HVT vaccination did not provide an effective protection against vvMDV infection. It is concluded that scaleless mutant chickens are susceptible to vvMDV infection.

Susceptibility to Calonectria ilicicola in Soybean Grown in Greenhouse and Field

  • Kim, K. D.;Russin, J. S.;Snow, J. P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.239-244
    • /
    • 1998
  • Susceptibility of soybean cultivars to Calonectria illicicola was evaluated in a greenhouse by inoculating seedlings with mycelium in agar discs placed on the stems at the soil line. A range of responses was detected among cultivars following inoculation with a virulent isolate of C.ilicicola. Rankings of cultivars between greenhouse tests 1 and 2 were similar for disease severity and areas under the disease progress curves (AUDPC). In addition, rankings of cultivars for Final disease severity were highly correlated with AUDPC in test 1 ($r_s$ =0.88, t =5.48, p<0.001), test 2 ($r_s$ =0.99, t =22.10, p<0.001), and when tests were combined ($r_s$=0.89, t=5.82, p<0. 001). Final disease severity and AUDPC consistently identified Asgrow 7986, Braxton, Cajun, and Forrest as soybean cultivars least susceptible to red crown rot. In 1993 and 1994 field tests, a range in disease susceptibility was observed for tested cultivars but none was completely resistant. Soybean cultivars Braxton, Cajun, and Forrest, which were least susceptible to red crown rot in greenhouse tests, also ranked among cultivars with the lowest disease incidence and AUDPC in field tests. Comparisons .between rankings of the eight cultivars common to greenhouse and field tests showed a correlation between final disease severity from combined greenhouse tests and both final disease incidence ($r_s$=0.63, t =1.99, p<0.1) and AUDPC ($r_s$=0.60, t =1.82, p < 0.2) from the combined field tests. However, AUDPC from greenhouse tests did not correlate with either final disease incidence or AUDPC from field tests. The green-house screening method provided consistent results between greenhouse and field tests and successfully identified the least susceptible cultivars Braxton, Cajun, and Forrest.

  • PDF