• 제목/요약/키워드: disease resistance soybean

검색결과 65건 처리시간 0.024초

콩 모자이크 바이러스의 계통분류와 콩 품종의 저항성 유전에 관한 고찰 (Identification of Soybean Mosaic Virus Strains and a Consideration on Genetics of Soybean for Resistance to SMV Strains)

  • 조의규
    • 식물병과 농업
    • /
    • 제1권2호
    • /
    • pp.22-25
    • /
    • 1995
  • The soybean necrotic disease has been shown to be caused by a virulent strain or strains of soybean mosaic virus (SMV) in soybean cultivar Kwnaggyo. However, the disease was found in soybean cultivar Hwanggeum which was released as a leading and mosaic resistant soybean cultivar in Korea. The strain SMV-G5H appeared to an isolate showing similar characteristics with the strain SMV-G7, although there were some variations in reactions of soybean differentials used.

  • PDF

대두(大豆)갈색무늬병의 병진전(病進展)과 품종간저항성(品種間抵抗性) 검정(檢定) (Evaluation of Septoria Brown Spot Disease and the Disease Resistance in Soybean Cultivars)

  • 오정행
    • 한국응용곤충학회지
    • /
    • 제24권2호
    • /
    • pp.103-106
    • /
    • 1985
  • 대두(大豆) 갈색무늬병에 대한 저항성(抵抗性)의 포장검정(圃場檢定)에 적합한 생육시기(生育時期)를 결정하고 수집재래종(蒐集在來種)으로부터 저항성인자원(抵抗性因子源)을 찾기 위 하여 본실험(本實驗)을 수행하였던 바, 1. 갈색무늬병에 대한 저항성(抵抗性) 품종간(品種間)에 차이(差異)가 현저하였으며 수직감염율(垂直感染率)과 병반면적율간(病斑面積率間)에는 상관(相關)이 있었다. 2. 병반면적율(病斑面積率)과 병진전곡선면적(病進展曲線面積)과의 상관도(相關度)는 대두(大豆) 생육기중(生育期中) 개화기(開花期)에서 가장 높아 포장에서의 저항성 검정시기는 개화기(開花期)가 적당한 것으로 보였다. 3. 수집재래종(蒐集在來種) 1,428계통의 저항성(抵抗性) 검정결과(檢定結果) 고도저항성(高度抵抗性) 계통(系統)은 발견할 수 없었고 중도저항성(中度抵抗性)인 4 계통(系統)을 선발할 수 있었다.

  • PDF

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

Variation in the Resistance of Japanese Soybean Cultivars to Phytophthora Root and Stem Rot during the Early Plant Growth Stages and the Effects of a Fungicide Seed Treatment

  • Akamatsu, Hajime;Kato, Masayasu;Ochi, Sunao;Mimuro, Genki;Matsuoka, Jun-ichi;Takahashi, Mami
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.219-233
    • /
    • 2019
  • Soybean cultivars susceptible to Phytophthora root and stem rot are vulnerable to seed rot and damping-off of seedlings and young plants following an infection by Phytophthora sojae. In this study, the disease responses of Japanese soybean cultivars including currently grown main cultivars during the early growth stages were investigated following infections by multiple P. sojae isolates from Japanese fields. The extent of the resistance to 17 P. sojae isolates after inoculations at 14, 21, and 28 days after seeding varied significantly among 18 Japanese and two US soybean cultivars. Moreover, the disease responses of each cultivar differed significantly depending on the P. sojae isolate and the plant age at inoculation. Additionally, the treatment of 'Nattosyo-ryu' seeds with three fungicidal agrochemicals provided significant protection from P. sojae when plants were inoculated at 14-28 days after seeding. These results indicate that none of the Japanese soybean cultivars are completely resistant to all tested P. sojae isolates during the first month after sowing. However, the severity of the disease was limited when plants were inoculated during the later growth stages. Furthermore, the protective effects of the tested agrochemicals were maintained for at least 28 days after the seed treatment. Japanese soybean cultivars susceptible to Phytophthora root and stem rot that are grown under environmental conditions favorable for P. sojae infections require the implementation of certain practices, such as seed treatments with appropriate agrochemicals, to ensure they are protected from P. sojae during the early part of the soybean growing season.

Evaluation in Korean Soybean Cultivars of Resistance to Soybean Mosaic Virus

  • Kim, Yul-Ho;Kim, Ok-Sun;Moon, Jung-Kyeong;Roh, Jae-Hwan;Im, Dae-Joon;Hur, Il-Bong;Lee, Sang-Chul
    • 한국작물학회지
    • /
    • 제46권1호
    • /
    • pp.17-21
    • /
    • 2001
  • Soybean mosaic virus (SMV) resistance of Korean recommended soybeans was evaluated naturally and by mechanical inoculation in Suwon. Based on the differential reaction of forty-four soybean genotypes tested to nine different SMV strains, soybeans were classified into twenty-four groups. Myeongjunamulkong and Ilpumgeom-jeongkong showed a high degree of resistance to nine SMV strains, having no symptom. The other cultivars produced various reactions according to inoculation of each SMV strain: symptomless, mosaic or systemic necrosis. Only five cultivars such as Kwangankong, Eunhakong, Tawonkong, Namhaekong, Sobaegnamulkong were totally susceptible to every strain. There was variation in disease incidence. Soybeans, having the highest levels of resistance to G5H and G7H in the greenhouse, showed the lowest levels of SMV incidence in the field of Suwon. Myeong-junamulkong, Ilpumgeomjeongkong, Soyangkong, Pungsannamulkong, Sodamkong, Jangmikong, Geomjeong-kong2, Pureunkong, Sinpaldalkong2, Duyoukong, and Geumgangkong were fairly resistant to SMV. And SMV incidence of Taekwangkong, Saealkong and Baegunkong was over 45% with symptom of bud necrosis. And soybeans, highly resistant to SMV in the field and the greenhouse, were mainly derived from Jangyeobkong and Hwang-keumkong resistant to G1-G7.

  • PDF

Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

  • Abdel-Monaim, Montaser Fawzy;Ismail, Mamdoh Ewis;Morsy, Kadry Mohamed
    • Mycobiology
    • /
    • 제39권4호
    • /
    • pp.290-298
    • /
    • 2011
  • The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

콩 주요 품종에 대한 점무늬병 저항성 평가 (Assessing Frogeye Leaf Spot Resistance on Recommended Soybean Cultivars)

  • 강인정;심형권;신동범;노재환;고재덕;허성기
    • 식물병연구
    • /
    • 제21권3호
    • /
    • pp.243-249
    • /
    • 2015
  • 점무늬병은 콩에서 최대 50% 정도의 수량감소가 보고된 병으로 최근 한국 콩 재배포장에서 큰 문제로 대두되고 있어 최근 6년간의 보급 품종을 대상으로 콩 점무늬병에 대한 저항성 검정을 실시하였다. 표준화된 검정방법을 적용하기 위해 가장 효과적인 포자 형성 배지 조건을 탐색하고 저항성 검정 평가 기준을 확립하였다. 포자형성은 $25^{\circ}C$, 12시간 광 조건과 암 조건에서 V8 juice를 이용한 배지의 포자 형성이 가장 효과적임을 알 수 있었다. 접종은 $10^5spores/ml$로 준비하여, 제 5 복엽 완전전개기인 V6 stage까지 키운 건강한 콩 식물체에 실시하였고 병 반응은 28일 동안 관찰하였다. 그 결과 대풍은 8개 균주 모두 저항성을 보였고, 신팔달2호는 7개 균주에, 연풍, 청아는 6개 균주에 저항성을 보였다. 반면에 황금, 태광, 대원, 천상, 신화 등은 평가한 8개 균주에 모두 감수성 반응을 나타내었다. 콩 점무늬병에 대한 저항성 품종을 육종하기 위해 표준화되고 정밀화된 저항성 검정방법과 판정 체계를 갖추는 것은 매우 중요하며 이 방법은 차후 포장 저항성 검정에도 적용할 수 있을 것이라 기대한다.

Genome-wide Association Analyses for Resistance to Phytophthora sojae and Pseudomonas amygdali pv. tabaci in Soybean

  • Hee Jin You;Ruihua Zhao;EunJee Kang;Younghyeon Kim;In Jeong Kang;Sungwoo Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.186-186
    • /
    • 2022
  • Phytophthora root and stem rot (PRSR) and wildfire disease (WFD) of soybean are frequently observed in the field of South Korea. The most environmentally friendly way to control PRSR and WFD is to use soybean varieties with resistance to Phytophthora sojae (P. sojae) and Pseudomonas amygdali pv. tabaci. Plant germplasm is an important gene pool for soybean breeding and improvement. In this study, hundreds of soybean accessions were evaluated for the two pathogens, and genome-wide association analyses were conducted using 104,955 SNPs to identify resistance loci for the two pathogens. Of 193 accessions, 46 genotypes showed resistance reaction, while 143 did susceptibility for PRSP. Twenty SNPs were significantly associated with resistance to P. sojae on chromosomes (Chr.) 3 and 4. Significant SNPs on Chr.3 were located within the known Rps gene region. A region on Chr. 4 is considered as a new candidate resistance loci. For evalation of resistance to WFD, 18, 31,74,36 and 34 genotypes were counted by a scale of 1-5, respectively. Five SNP markers on Chrs 9,11,12,17 and 18 were significantly associated with resistance to P. amygdali pv. tabaci. The identified SNPs and genomic regions will provide a useful information for further researches and breeding for resistance to P. sojae and P. amygdali pv. tabaci.

  • PDF

Efficacy of Fluazinam and Iprodione+Propineb in the Suppression of Diaporthe phaseolorum, Colletotrichum truncatum and Cercospora kikuchii, the Causal Agents of Seed Decay in Soybean

  • Oh, Jeung-Haing;Kang, Nag-Won
    • The Plant Pathology Journal
    • /
    • 제18권4호
    • /
    • pp.216-220
    • /
    • 2002
  • Seed decay of soybean caused by Diaporthe phaseolorum, Colletotrichum truncatum and Cercospora kikuchii is a serious disease when soybean is harvested under warm and wet weather conditions. Benomyl has been used for controlling the disease, however, benomyl application may be limited due to common occurrence of resistance. The efficacy of 21 fungicides against the pathogens was evaluated in vitro. Among the fungicides tested, benomyl, carbendazim, fluazinam, iprodione+propineb, thiophanate-methyl, and triflumizole were found effective and were evaluated for their ability to control the seed pathogens. Fluazinam completely inhibited mycelial growth at a concentration of 100 $\mu\textrm{g}$/$\textrm{m}{\ell}$ for D. phaseolorum; and at a concentration of 500 $\mu\textrm{g}$/$\textrm{m}{\ell}$ for C. truncatum and C. kikuchii. $EC_90$ values of fluazinam were similar to that of benomyl. Because fluazinam, iprodione+propineb, and triflumizole were found effective against the seed pathogens, these were subjected for field-testing. Suppression of pod and seed infection by fluazinam and iprodione+propineb was as high as that of benomyl without any reduction in agronomic characters of soybean. This study shows that fluazinam and iprodione+propineb may be used in combination with benomyl to control seed pathogens, manage resistance, and ensure production of high quality soybean seeds.