• Title/Summary/Keyword: disease prediction

Search Result 540, Processing Time 0.023 seconds

Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis

  • Gazi, Md. Amran;Mahmud, Sultan;Fahim, Shah Mohammad;Kibria, Mohammad Golam;Palit, Parag;Islam, Md. Rezaul;Rashid, Humaira;Das, Subhasish;Mahfuz, Mustafa;Ahmeed, Tahmeed
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.26.1-26.12
    • /
    • 2018
  • Shigella spp. constitutes some of the key pathogens responsible for the global burden of diarrhoeal disease. With over 164 million reported cases per annum, shigellosis accounts for 1.1 million deaths each year. Majority of these cases occur among the children of the developing nations and the emergence of multi-drug resistance Shigella strains in clinical isolates demands the development of better/new drugs against this pathogen. The genome of Shigella flexneri was extensively analyzed and found 4,362 proteins among which the functions of 674 proteins, termed as hypothetical proteins (HPs) had not been previously elucidated. Amino acid sequences of all these 674 HPs were studied and the functions of a total of 39 HPs have been assigned with high level of confidence. Here we have utilized a combination of the latest versions of databases to assign the precise function of HPs for which no experimental information is available. These HPs were found to belong to various classes of proteins such as enzymes, binding proteins, signal transducers, lipoprotein, transporters, virulence and other proteins. Evaluation of the performance of the various computational tools conducted using receiver operating characteristic curve analysis and a resoundingly high average accuracy of 93.6% were obtained. Our comprehensive analysis will help to gain greater understanding for the development of many novel potential therapeutic interventions to defeat Shigella infection.

Image Augmentation of Paralichthys Olivaceus Disease Using SinGAN Deep Learning Model (SinGAN 딥러닝 모델을 이용한 넙치 질병 이미지 증강)

  • Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.322-330
    • /
    • 2021
  • In modern aquaculture, mass mortality is a very important issue that determines the success of aquaculture business. If a fish disease is not detected at an early stage in the farm, the disease spreads quickly because the farm is a closed environment. Therefore, early detection of diseases is crucial to prevent mass mortality of fish raised in farms. Recently deep learning-based automatic identification of fish diseases has been widely used, but there are many difficulties in identifying objects due to insufficient images of fish diseases. Therefore, this paper suggests a method to generate a large number of fish disease images by synthesizing normal images and disease images using SinGAN deep learning model in order to to solve the lack of fish disease images. We generate images from the three most frequently occurring Paralichthys Olivaceus diseases such as Scuticociliatida, Vibriosis, and Lymphocytosis and compare them with the original image. In this study, a total of 330 sheets of scutica disease, 110 sheets of vibrioemia, and 110 sheets of limphosis were made by synthesizing 10 disease patterns with 11 normal halibut images, and 1,320 images were produced by quadrupling the images.

Research on Application of SIR-based Prediction Model According to the Progress of COVID-19 (코로나-19 진행에 따른 SIR 기반 예측모형적용 연구)

  • Hoon Kim;Sang Sup Cho;Dong Woo Chae
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.

Hyperparameter Tuning Based Machine Learning classifier for Breast Cancer Prediction

  • Md. Mijanur Rahman;Asikur Rahman Raju;Sumiea Akter Pinky;Swarnali Akter
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer's favorable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model's overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, and finally the F1 score. In this study hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach.

Discriminant Model V for Syndrome Differentiation Diagnosis based on Sex in Stroke Patients (성별을 고려한 중풍 변증진단 판별모형개발(V))

  • Kang, Byoung-Kab;Lee, Jung-Sup;Ko, Mi-Mi;Kwon, Se-Hyug;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.138-143
    • /
    • 2011
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. As a part of researches for standardization and objectification of differentiation of syndromes for stroke, in this present study, we tried to develop the statistical diagnostic tool discriminating the 4 subtypes of syndrome differentiation using the essential indices considering the sex. Discriminant analysis was carried out using clinical data collected from 1,448 stroke patients who was identically diagnosed for the syndrome differentiation subtypes diagnosed by two clinical experts with more than 3 year experiences. Empirical discriminant model(V) for different sex was constructed using 61 significant symptoms and sign indices selected by stepwise selection. We comparison. We make comparison a between discriminant model(V) and discriminant model(IV) using 33 significant symptoms and sign indices selected by stepwise selection. Development of statistical diagnostic tool discriminating 4 subtypes by sex : The discriminant model with the 24 significant indices in women and the 19 significant indices in men was developed for discriminating the 4 subtypes of syndrome differentiation including phlegm-dampness, qi-deficiency, yin-deficiency and fire-heat. Diagnostic accuracy and prediction rate of syndrome differentiation by sex : The overall diagnostic accuracy and prediction rate of 4 syndrome differentiation subtypes using 24 symptom and sign indices was 74.63%(403/540) and 68.46%(89/130) in women, 19 symptom and sign indices was 72.05%(446/619) and 70.44%(112/159) in men. These results are almost same as those of that the overall diagnostic accuracy(73.68%) and prediction rate(70.59%) are analyzed by the discriminant model(IV) using 33 symptom and sign indices selected by stepwise selection. Considering sex, the statistical discriminant model(V) with significant 24 symptom and sign indices in women and 19 symptom and sign indices in men, instead of 33 indices would be used in the field of oriental medicine contributing to the objectification of syndrome differentiation with parsimony rule.

Prognostic Value of Coronary CT Angiography for Predicting Poor Cardiac Outcome in Stroke Patients without Known Cardiac Disease or Chest Pain: The Assessment of Coronary Artery Disease in Stroke Patients Study

  • Sung Hyun Yoon;Eunhee Kim;Yongho Jeon;Sang Yoon Yi;Hee-Joon Bae;Ik-Kyung Jang;Joo Myung Lee;Seung Min Yoo;Charles S. White;Eun Ju Chun
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1055-1064
    • /
    • 2020
  • Objective: To assess the incremental prognostic value of coronary computed tomography angiography (CCTA) in comparison to a clinical risk model (Framingham risk score, FRS) and coronary artery calcium score (CACS) for future cardiac events in ischemic stroke patients without chest pain. Materials and Methods: This retrospective study included 1418 patients with acute stroke who had no previous cardiac disease and underwent CCTA, including CACS. Stenosis degree and plaque types (high-risk, non-calcified, mixed, or calcified plaques) were assessed as CCTA variables. High-risk plaque was defined when at least two of the following characteristics were observed: low-density plaque, positive remodeling, spotty calcification, or napkin-ring sign. We compared the incremental prognostic value of CCTA for major adverse cardiovascular events (MACE) over CACS and FRS. Results: The prevalence of any plaque and obstructive coronary artery disease (CAD) (stenosis ≥ 50%) were 70.7% and 30.2%, respectively. During the median follow-up period of 48 months, 108 patients (7.6%) experienced MACE. Increasing FRS, CACS, and stenosis degree were positively associated with MACE (all p < 0.05). Patients with high-risk plaque type showed the highest incidence of MACE, followed by non-calcified, mixed, and calcified plaque, respectively (log-rank p < 0.001). Among the prediction models for MACE, adding stenosis degree to FRS showed better discrimination and risk reclassification compared to FRS or the FRS + CACS model (all p < 0.05). Furthermore, incorporating plaque type in the prediction model significantly improved reclassification (integrated discrimination improvement, 0.08; p = 0.023) and showed the highest discrimination index (C-statistics, 0.85). However, the addition of CACS on CCTA with FRS did not add to the prediction ability for MACE (p > 0.05). Conclusion: Assessment of stenosis degree and plaque type using CCTA provided additional prognostic value over CACS and FRS to risk stratify stroke patients without prior history of CAD better.

Discriminant Model for Pattern Identifications in Stroke Patients Based on Pattern Diagnosis Processed by Oriental Physicians (전문가 변증과정을 반영한 중풍 변증 판별모형)

  • Lee, Jung-Sup;Kim, So-Yeon;Kang, Byoung-Kab;Ko, Mi-Mi;Kim, Jeong-Cheol;Oh, Dal-Seok;Kim, No-Soo;Choi, Sun-Mi;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1460-1464
    • /
    • 2009
  • In spite of many studies on statistical model for pattern identifications (PIs), little attention has been paid to the complexity of pattern diagnosis processed by oriental physicians. The aim of this study is to develop a statistical diagnostic model which discriminates four PIs using multiple indicators in stroke. Clinical data were collected from 981 stroke patients and 516 data of which PIs were agreed by two independent physicians were included. Discriminant analysis was carried out using clinical indicators such as symptoms and signs which referred to pattern diagnosis, and applied to validation samples which contained all symptoms and signs manifested. Four Fischer's linear discriminant models were derived and their accuracy and prediction rates were 93.2% and 80.43%, respectively. It is important to consider the pattern diagnosis processed by oriental physicians in developing statistical model for PIs. The discriminant model developed in this study using multiple indicators is valid, and can be used in the clinical fields.

Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle (무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지)

  • Lim, Eon Taek;Do, Myung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.317-325
    • /
    • 2021
  • Pine wilt disease first appeared in Busan in 1998; it is a serious disease that causes enormous damage to pine trees. The Korean government enacted a special law on the control of pine wilt disease in 2005, which controls and prohibits the movement of pine trees in affected areas. However, existing forecasting and control methods have physical and economic challenges in reducing pine wilt disease that occurs simultaneously and radically in mountainous terrain. In this study, the authors present the use of a deep learning object recognition and prediction method based on visual materials using an unmanned aerial vehicle (UAV) to effectively detect trees suspected of being infected with pine wilt disease. In order to observe pine wilt disease, an orthomosaic was produced using image data acquired through aerial shots. As a result, 198 damaged trees were identified, while 84 damaged trees were identified in field surveys that excluded areas with inaccessible steep slopes and cliffs. Analysis using image segmentation (SegNet) and image detection (YOLOv2) obtained a performance value of 0.57 and 0.77, respectively.

The KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD): A Korean Chronic Kidney Disease Cohort

  • Oh, Kook-Hwan;Park, Sue K.;Kim, Jayoun;Ahn, Curie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.4
    • /
    • pp.313-320
    • /
    • 2022
  • The KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD) was launched in 2011 with the support of the Korea Disease Control and Prevention Agency. The study was designed with the aim of exploring the various clinical features and characteristics of chronic kidney disease (CKD) in Koreans, and elucidating the risk factors for CKD progression and adverse outcomes of CKD. For the cohort study, nephrologists at 9 tertiary university-affiliated hospitals participated in patient recruitment and follow-up. Biostatisticians and epidemiologists also participated in the basic design and structuring of the study. From 2011 until 2016, the KNOW-CKD Phase I recruited 2238 adult patients with CKD from stages G1 to G5, who were not receiving renal replacement therapy. The KNOW-CKD Phase II recruitment was started in 2019, with an enrollment target of 1500 subjects, focused on diabetic nephropathy and hypertensive kidney diseases in patients with reduced kidney function who are presumed to be at a higher risk of adverse outcomes. As of 2021, the KNOW-CKD investigators have published articles in the fields of socioeconomics, quality of life, nutrition, physical activity, renal progression, cardiovascular disease and outcomes, anemia, mineral bone disease, serum and urine biomarkers, and international and inter-ethnic comparisons. The KNOW-CKD researchers will elaborate a prediction model for various outcomes of CKD such as the development of end-stage kidney disease, major adverse cardiovascular events, and death.

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis (망막색소변성 데이터의 예후 예측을 위한 패턴 분류)

  • Kim, Hyun-Mi;Woo, Yong-Tae;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.