• Title/Summary/Keyword: disease forecasting

Search Result 89, Processing Time 0.02 seconds

Current Status and Future Prospect of Plant Disease Forecasting System in Korea (우리 나라 식물병 발생예찰의 현황과 전망)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.84-91
    • /
    • 2002
  • Disease forecasting in Korea was first studied in the Department of Fundamental Research, in the Central Agricultural Technology Institute in Suwon in 1947, where the dispersal of air-borne conidia of blast and brown spot pathogens in rice was examined. Disease forecasting system in Korea is operated based on information obtained from 200 main forecasting plots scattered around country (rice 150, economic crops 50) and 1,403 supplementary observational plots (rice 1,050, others 353) maintained by Korean government. Total number of target crops and diseases in both forecasting plots amount to 30 crops and 104 diseases. Disease development in the forecasting plots is examined by two extension agents specialized in disease forecasting, working in the national Agricul-tural Technology Service Center(ATSC) founded in each city and prefecture. The data obtained by the extension agents are transferred to a central organization, Rural Development Administration (RDA) through an internet-web system for analysis in a nation-wide forecasting program, and forwarded far the Central Forecasting Council consisted of 12 members from administration, university, research institution, meteorology station, and mass media to discuss present situation of disease development and subsequent progress. The council issues a forecasting information message, as a result of analysis, that is announced in public via mass media to 245 agencies including ATSC, who informs to local administration, the related agencies and farmers for implementation of disease control activity. However, in future successful performance of plant disease forecasting system is thought to be securing of excellent extension agents specialized in disease forecasting, elevation of their forecasting ability through continuous trainings, and furnishing of prominent forecasting equipments. Researches in plant disease forecasting in Korea have been concentrated on rice blast, where much information is available, but are substan-tially limited in other diseases. Most of the forecasting researches failed to achieve the continuity of researches on specialized topic, ignoring steady improvement towards practical use. Since disease forecasting loses its value without practicality, more efforts are needed to improve the practicality of the forecasting method in both spatial and temporal aspects. Since significance of disease forecasting is directly related to economic profit, further fore-casting researches should be planned and propelled in relation to fungicide spray scheduling or decision-making of control activities.

Design and Implementation of Livestock Disease Forecasting System (가축 질병 예찰 시스템 설계 및 구현)

  • Kim, Hyun-Gi;Yang, Cheol-Ju;Yoe, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1263-1270
    • /
    • 2012
  • Livestock disease that decreases the farm productivity and income leads to not only financial loss but also national loss from the spread of contagious disease. The purpose of this paper is to propose a livestock disease forecasting system that can diagnose disease of livestock at an early stage based on the livestock activity and body temperature. The proposed livestock disease forecasting system collect data on livestock activity and body temperature using a acceleration sensor and thermal imaging camera and comparing the data with control according to disease. It is expected that, this system can be accurately identify and prevent spread of livestock disease beforehand to minimize damages caused by disease to improve the productivity and the rate of return of livestock farms.

Establishment of Pest Forecasting Management System for the Improvement of Pass Ratio of Korean Exporting Pears

  • Park, Joong Won;Park, Jeong Sun;Kang, Ah Rang;Na, In Seop;Cha, Gwang Hong;Oh, Hwan Jung;Lee, Sang Hyun;Yang, Kwang Yeol;Kim, Wol Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • A decrease in pass ratio of Korean exporting pears causes several negative effects including an increase in pesticide dependency. In this study, we attempted to establish the pest forecasting management system, composed of weekly field forecasting by pear farmers, meteorological data obtained by automatic weather station (AWS), newly designed internet web page ($\underline{http://pearpest.jnu.ac.kr/}$) as information collecting and providing ground, and information providing service. The weekly field forecasting information on major pear diseases and pests was collected from the forecasting team composed of five team leaders from each pear exporting complex. Further, an abridged weather information for the prediction of an infestation of major disease (pear scab) and pest (pear psylla and scale species) was obtained from an AWS installed at Bonghwang in Naju City. Such information was then promptly uploaded on the web page and also publicized to the pear famers specializing in export. We hope this pest forecasting management system increases the pass ratio of Korean exporting pears throughout establishment of famer-oriented forecasting, inspiring famers' effort for the prevention and forecasting of diseases and pests occurring at pear orchards.

Livestock Disease Forecasting and Smart Livestock Farm Integrated Control System based on Cloud Computing (클라우드 컴퓨팅기반 가축 질병 예찰 및 스마트 축사 통합 관제 시스템)

  • Jung, Ji-sung;Lee, Meong-hun;Park, Jong-kweon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.88-94
    • /
    • 2019
  • Livestock disease is a very important issue in the livestock industry because if livestock disease is not responded quickly enough, its damage can be devastating. To solve the issues involving the occurrence of livestock disease, it is necessary to diagnose in advance the status of livestock disease and develop systematic and scientific livestock feeding technologies. However, there is a lack of domestic studies on such technologies in Korea. This paper, therefore, proposes Livestock Disease Forecasting and Livestock Farm Integrated Control System using Cloud Computing to quickly manage livestock disease. The proposed system collects a variety of livestock data from wireless sensor networks and application. Moreover, it saves and manages the data with the use of the column-oriented database Hadoop HBase, a column-oriented database management system. This provides livestock disease forecasting and livestock farm integrated controlling service through MapReduce Model-based parallel data processing. Lastly, it also provides REST-based web service so that users can receive the service on various platforms, such as PCs or mobile devices.

Forecasting of plant disease and insect for an agricultural complex and farm in environment-friendly cultivation of Rice (Oryza sativa L.)

  • Cha, K.H.;Oh, H.J.;Park, R.D.;Jung, W.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.123-126
    • /
    • 2011
  • To investigate the forecasting of plant disease and insect for an agricultural complex and farm in environment-friendly cultivation of Rice, environment-friendly agricultural five complexs and five farms were selected in Youngam and Naju area, Jonnam, Korea. Preventation objects of plant disease and insect were leaf blast, neck blast, sheath blight, bacterial leaf blight, and hopper. Factors of sheath blight occurrence in environment-friendly agricultural complex were a fast transplanting time and a narrow planting density. Bacterial leaf blight in rice occurred severely in the area under water. Rice growth in environment-friendly agricultural complex was decreased heavy drying by hopper appearance.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo;Hong, Soon-Sung;Han, Yong-Kyu;Kim, Kyu-Rang;Kim, Sung-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

Students' Actual Use and Satisfaction of Meteorological Information and Demands on Health Forecasting at a University (일 대학 학생들의 기상정보 이용실태와 만족도 및 건강정보 요구도)

  • Oh, Jin-A;Park, Jong-Kil
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.15 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • Purpose: Climate change affects human health and calls for a health forecasting service. The purpose of this study was to explore the students' actual use and their satisfaction with meteorological information and the demands on health forecasting at a university in South Kyungsang Province. Method: This study used a descriptive design through structured self-report questionnaires including frequency, contents, purpose, perception, satisfaction of meterological information and need and demand of health forecasting. Data were collected from June 1 to 5, 2009 and analyzed using the SPSS 17.0 program. Descriptive statistics, t-test, ANOVA, $\chi^2$ test and Person's correlation coefficient were used to analyze the data. Result: The majority of the students watched the daily weather information to decide about daily work, outdoor activity or habitually. The mean score of need for health forecasting was $3.44{\pm}.81$, and the demand for health forecasting was $2.93{\pm}1.05$. Significant differences were found in the need for health forecasting according to sex, major, and environmental disease. In addition, the higher the satisfaction of health forecasting, the higher the demand for it. Conclusion: I suggest improving the meteorological information system technically and developing a health forecasting service resulting in a healthier and more comfortable life.

Development of an Aerial Precision Forecasting Techniques for the Pine Wilt Disease Damaged Area Based on GIS and GPS (GIS와 GPS를 이용한 소나무재선충병 피해지 항공정밀예찰 기법 개발)

  • Kim, Joon-Bum;Kim, Dong-Yun;Park, Nam-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • The spatial distribution characteristics of damaged trees by the pine wilt disease appear scattered spots spreading from single dead trees. That is the reason why it is difficult to early detect damage and to prevent from extensive damage. Thus, it is very important to forecast and analyze the damage occurrences, to establish strategies for prevention, and to supervise them. However, conventional survey which observes around roads or residential areas by naked eyes was impossible to investigate completely, missing target areas and dangerous areas. Therefore, aerial forecasting techniques on the damaged area were developed using GIS, GPS, and helicopters for an accurate observation of systematic and scientific approach in this study. Moreover, advantages of the techniques application were confirmed to survey 972 dead tree samples at 349 position-coordinates in 32 cities (about $28,810km^2$), 2005. This study is expected to apply widely to find dead trees and the causes, particularly by pine wilt disease.