• 제목/요약/키워드: disease forecast model

검색결과 34건 처리시간 0.027초

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

  • Kim, Kyu-Rang;Seem, Robert C.;Park, Eun-Woo;Zack, John W.;Magarey, Roger D.
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.111-118
    • /
    • 2005
  • Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

Application of smart mosquito monitoring traps for the mosquito forecast systems by Seoul Metropolitan city

  • Na, Sumi;Yi, Hoonbok
    • Journal of Ecology and Environment
    • /
    • 제44권2호
    • /
    • pp.98-105
    • /
    • 2020
  • Background: The purpose of this study, mosquito forecast system implemented by Seoul Metropolitan city, was to obtain the mosquito prediction formula by using the mosquito population data and the environmental data of the past. Results: For this study, the mosquito population data from April 1, 2015, to October 31, 2017, were collected. The mosquito population data were collected from the 50 smart mosquito traps (DMSs), two of which were installed in each district (Korean, gu) in Seoul Metropolitan city since 2015. Environmental factors were collected from the Automatic Weather System (AWS) by the Korea Meteorological Administration. The data of the nearest AWS devices from each DMS were used for the prediction formula analysis. We found out that the environmental factors affecting the mosquito population in Seoul Metropolitan city were the mean temperature and rainfall. We predicted the following equations by the generalized linear model analysis: ln(Mosquito population) = 2.519 + 0.08 × mean temperature + 0.001 × rainfall. Conclusions: We expect that the mosquito forecast system would be used for predicting the mosquito population and to prevent the spread of disease through mosquitoes.

A Machine Learning Univariate Time series Model for Forecasting COVID-19 Confirmed Cases: A Pilot Study in Botswana

  • Mphale, Ofaletse;Okike, Ezekiel U;Rafifing, Neo
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.225-233
    • /
    • 2022
  • The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.

Maryblyt 기반 참다래 꽃썩음병 예측모형 개발 (Development of a Maryblyt-based Forecasting Model for Kiwifruit Bacterial Blossom Blight)

  • 김광형;고영진
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.67-73
    • /
    • 2015
  • P. syringae pv. syringae에 의해 발생하는 참다래 꽃썩음병은 개화기 전후의 기상조건에 영향을 크게 받는다. 지금까지 기상조건과 꽃썩음병 발생의 상관관계를 밝힌 연구들은 많았지만, 이를 활용해 꽃썩음병의 감염 위험도를 나타낼 수 있는 예측모형은 개발되지 않았다. 본 연구에서는 기존 정보를 조사하고 꽃썩음병의 병원생태와 유사한 화상병 예측모형인 Maryblyt모형을 기반으로 참다래 꽃썩음병 예측모형인 Pss-KBB Risk Model을 개발하였다. 비교평가를 통한 검증 결과, Pss-KBB Risk Model은 각각 온도와 강수 정보만을 이용하는 개화전 평균온도 모형과 강우일수 모형에 비해 실제 과수원의 병해 발생정도를 더 잘 모의하는 것으로 나타났다. 따라서 Pss-KBB Risk Model과 기상예보자료를 활용해 꽃썩음병의 발병 위험도를 예측하여 꽃썩음병에 대한 적기적량 방제가 가능할 것으로 판단된다.

여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측 (Prediction for spatial time series models with several weight matrices)

  • 이성덕;주수인;이소현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2017
  • 시간의 변화뿐만 아니라 공간 위치의 변화를 함께 고려한 자료를 공간 시계열 자료라고 한다. 공간 시계열 자기회귀 이동평균 모형과 공간 시계열 중선형 모형에 대해 소개하고 각각의 Kalman Filter 방법에 의한 모수 추정의 과정을 거쳐 최종 선택된 모형의 예측력을 비교하였다. 또한 공간 시계열 자료의 모형에 포함되는 가중행렬에 대하여 기존의 방법인 동일한 가중치와 더불어 거리에 비례한 가중치와 인구수에 비례한 가중치를 제안하였다. 실증분석을 위해 한국질병관리본부에서 수집한 유행성 이하 선염 자료를 활용하여 가중치를 달리한 공간 시계열 모형을 적합시키고 예측하였다. 예측 오차 제곱합을 활용하여 어느 모형이 가장 효과적인 모형인지 판정하였다.

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • 제17권3호
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

코로나-19 진행에 따른 SIR 기반 예측모형적용 연구 (Research on Application of SIR-based Prediction Model According to the Progress of COVID-19)

  • 김훈;조상섭;채동우
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.

A Forecasting System for Lung Cancer Sensitivities Using SNP Data

  • Ryoo, Myung-Chun;Kim, Sang-Jin;Park, Chang-Hyeon
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.191-194
    • /
    • 2008
  • SNP(Single Nucleotide Polymorphism) refers to the difference in a base pair existed in DNAs of individuals. Each of it appears per 1,000 bases in human genome and it enables each gene to defer in junctions, interacts with each other to make different shapes of humans, and produces different disease sensitivities. In this paper, we propose a system to forecast lung cancer sensitivities using SNP data related with the lung cancer. A lung cancer sensitivity forecasting model is also constructed through analysis of genetic and non-genetic factors for squamous cell carcinomas, adeno carcinomas, and small cell carcinomas that may frequently appear in Korean. The proposed system with the model gives the probabilities of the onset of lung cancers in the experimental subjects.

  • PDF