• Title/Summary/Keyword: discriminant ratio

검색결과 163건 처리시간 0.024초

주행여건과 선호매체를 고려한 경로전환 판별모형 개발 (Development of a Discriminant Model for Changing Routes considering Driving Conditions and Preferred Media)

  • 최윤혁;최기주;문병섭;고한검
    • 대한교통학회지
    • /
    • 제28권6호
    • /
    • pp.147-158
    • /
    • 2010
  • 교통부문 온실가스 저감과 도로의 경쟁력 강화를 위해 교통정보 제공을 통한 수요분산의 관심이 높아지고 있다. 그러나, 이를 위해서는 효율적이며 효과적인 정보제공전략 수립과 운전자 경로전환 행태와 영향요인들에 대한 연구가 선결적으로 필요한 바, 본 연구에서는 도로의 소통상황을 포함한 주행여건과 운전자의 정보매체 선호특성을 고려하여 경로전환 판별모형을 개발하고자 하였다. CART 분석을 이용한 집단구분에서는 주행여건에 따라 3개 군집으로 분류되었으며, 통계적으로 유의하였다. 그리고, CHAID 분석을 통해 경로전환에 영향을 미치는 주행여건과 선호매체 요인들을 통계적으로 유의한 집단으로 구분하여, 경로전환에 영향을 미치는 주요 요인을 파악하였다. 마지막으로, 판별분석을 통해 주행여건과 선호매체가 경로전환에 미치는 영향정도를 파악하고, 경로전환 예측 판별모형식을 개발하였다. 판별모형식 구축 결과, 경로전환은 주행여건에 더 많은 영향을 받는 것으로 나타났으며, 전체 판별적중률(Hit Ratio)은 64.2%로 도출되어 본 판별식은 일정수준 이상의 높은 판별력을 가지고 있었다.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

Principal Discriminant Variate (PDV) Method for Classification of Multicollinear Data: Application to Diagnosis of Mastitic Cows Using Near-Infrared Spectra of Plasma Samples

  • Jiang, Jian-Hui;Tsenkova, Roumiana;Yu, Ru-Qin;Ozaki, Yukihiro
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1244-1244
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from mastitic and healthy cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from mastitic and healthy cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA and FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference, thereby providing a useful means for spectroscopy-based clinic applications.

  • PDF

PRINCIPAL DISCRIMINANT VARIATE (PDV) METHOD FOR CLASSIFICATION OF MULTICOLLINEAR DATA WITH APPLICATION TO NEAR-INFRARED SPECTRA OF COW PLASMA SAMPLES

  • Jiang, Jian-Hui;Yuqing Wu;Yu, Ru-Qin;Yukihiro Ozaki
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1042-1042
    • /
    • 2001
  • In linear discriminant analysis there are two important properties concerning the effectiveness of discriminant function modeling. The first is the separability of the discriminant function for different classes. The separability reaches its optimum by maximizing the ratio of between-class to within-class variance. The second is the stability of the discriminant function against noises present in the measurement variables. One can optimize the stability by exploring the discriminant variates in a principal variation subspace, i. e., the directions that account for a majority of the total variation of the data. An unstable discriminant function will exhibit inflated variance in the prediction of future unclassified objects, exposed to a significantly increased risk of erroneous prediction. Therefore, an ideal discriminant function should not only separate different classes with a minimum misclassification rate for the training set, but also possess a good stability such that the prediction variance for unclassified objects can be as small as possible. In other words, an optimal classifier should find a balance between the separability and the stability. This is of special significance for multivariate spectroscopy-based classification where multicollinearity always leads to discriminant directions located in low-spread subspaces. A new regularized discriminant analysis technique, the principal discriminant variate (PDV) method, has been developed for handling effectively multicollinear data commonly encountered in multivariate spectroscopy-based classification. The motivation behind this method is to seek a sequence of discriminant directions that not only optimize the separability between different classes, but also account for a maximized variation present in the data. Three different formulations for the PDV methods are suggested, and an effective computing procedure is proposed for a PDV method. Near-infrared (NIR) spectra of blood plasma samples from daily monitoring of two Japanese cows have been used to evaluate the behavior of the PDV method in comparison with principal component analysis (PCA), discriminant partial least squares (DPLS), soft independent modeling of class analogies (SIMCA) and Fisher linear discriminant analysis (FLDA). Results obtained demonstrate that the PDV method exhibits improved stability in prediction without significant loss of separability. The NIR spectra of blood plasma samples from two cows are clearly discriminated between by the PDV method. Moreover, the proposed method provides superior performance to PCA, DPLS, SIMCA md FLDA, indicating that PDV is a promising tool in discriminant analysis of spectra-characterized samples with only small compositional difference.

  • PDF

기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구 (A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing)

  • 성웅현
    • 기술혁신학회지
    • /
    • 제10권2호
    • /
    • pp.183-205
    • /
    • 2007
  • 본 연구는 기술력평가에 근거해서 중소기업 부실예측 가능성을 사전에 예측할 수 있는 최적 판별 모형을 개발 제안하였다. 판별모형에 포함될 설명변수는 요인분석과 판별모형의 단계별 선택방법에 의하여 선정되었다. 분석결과 선형판별모형이 로지스틱판별모형보다 임계확률 관점에서 적절한 것으로 나타났다. 최적 선형판별모형의 분류 정분류율은 70.4%, 분류 예측력은 67.5%로 나타났다. 최적 선형판별모형의 활용도를 높이기 위해서 확실 범주와 유보범주를 구분할 수 있는 경계값을 설정하였다. 분석결과를 활용하면 기술금융 취급기관은 부실위험 평가와 더불어 기술금융 신청기업의 순위를 부여할 때 유용하게 사용할 수 있을 것으로 기대된다.

  • PDF

남성정장 치수규격를 위한 성인 남성의 체형 연구(I) - 상반신 체형을 중심으로 - (A Study on the Figure Types af Adult Males for the Sizing System of Men′s Suits - Focusing on the Upper Body -)

  • 이혜영;조진숙
    • 대한가정학회지
    • /
    • 제42권11호
    • /
    • pp.85-107
    • /
    • 2004
  • This study classified figure types of adult males into several kinds of shape to provide fundamental data for their clothing sizing system. The subjects were 1496 men aged between 20 and 60 years old. Data were analyzed by factor analysis, cluster analysis and discriminant analysis. The results were as follows 1. For the result of the interview, the data were grouped into three age brackets: 20-35,31-45 and 41-60 years. 2. Factor analysis using values, which were measurements divided by either weight or height, was carried out to extract factors which characterize the various figures. fve factors to determine the figure types were extracted. 3. Cluster analysis using factor scores was carried out to categorize the figure types within the age groups. Figure types, describing shoulder angie and body shape, were categorized into 3 per age group. 4. Stepwise discriminant analysis w3s used to ensure that these clusters could be utilized with appropriate hit ratio. The hit ratio for each age group was around 80%.

몽고인(蒙古人)을 위한 사상체질분류검사지(四象體質分類檢査紙)의 타당화(妥當化) 연구(硏究) (A Study on the Validity of the Questionnaire about Sasang Constitution Classification for Mongolians)

  • 김경수;이수경;신현규;고병희;송일병;이의주
    • 사상체질의학회지
    • /
    • 제19권1호
    • /
    • pp.98-115
    • /
    • 2007
  • 1. Objectives This study focuses on the Validity of the Questionnaire about Sasang Constitution Classification for Mongolians 2. Methods By using the way of backward elimination, certain variables are chosen from the 438 cases whose physical conditions are absolutely diagnosed. After that, discriminant analysis for the selected variables has been done to obtain the physical constitution equation and the accuracy ratio of diagnosis which are useful for physical constitution diagnosis. 3. Results and Conclusions (1) In tile Validity for the Questionnaire of Sasang Constitution Classification for Mongolians, the accuracy ratio of diagnosis of Taeyangin is 100%, Soyangin 62.5%, Taeumin 76.7%, and Soeumin 66.1% respectively as a result of the discriminant analysis employing Cronbach's alpha coefficient. On the whole, the accuracy ratio of diagnosis is 70.1%. (2). In the Validity for the Questionnaire of Sasang Constitution Classification for Mongolians, the accuracy ratio of diagnosis of 70.1% means that it beats the maximum chance criterion of 41.4% and the proportional chance criterion of 34.4% by 28.7% and 35.7% respectively. Conclusively, this questionnaire has discriminant power.

  • PDF

이산 웨이블릿 합성 영상을 이용한 철강 후판 검사의 조명 메커니즘에 관한 연구 (A Study on Illumination Mechanism of Steel Plate Inspection Using Wavelet Synthetic Images)

  • 조은덕;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.26-31
    • /
    • 2018
  • In this paper, surface defects and typical illumination mechanisms for steel plates are analyzed, and then optimum illumination mechanism is selected using discrete wavelet transform (DWT) synthetic images and discriminant measure (DM). The DWT synthetic images are generated using component images decomposed by Haar wavelet transform filter. The best synthetic image according to surface defects is determined using signal to noise ratio (SNR). The optimum illumination mechanism is selected by applying discriminant measure (DM) to the best synthetic images. The DM is applied using the tenengrad-euclidian function. The DM is evaluated as the degree of contrast using the defect boundary information. The performance of the optimum illumination mechanism is verified by quantitative data and intuitive image looks.

인공지능기법을 이용한 기업부도 예측 (Forecasting Corporate Bankruptcy with Artificial Intelligence)

  • 오우석;김진화
    • 산업융합연구
    • /
    • 제15권1호
    • /
    • pp.17-32
    • /
    • 2017
  • The purpose of this study is to evaluate financial models that can predict corporate bankruptcy with diverse studies on evaluation models. The study uses discriminant analysis, logistic model, decision tree, neural networks as analyses tools with 18 input variables as major financial factors. The study found meaningful variables such as current ratio, return on investment, ordinary income to total assets, total debt turn over rate, interest expenses to sales, net working capital to total assets and it also found that prediction performance of suggested method is a bit low compared to that in literature review. It is because the studies in the past uses the data set on the listed companies or companies audited from outside. And this study uses data on the companies whose credibility is not verified enough. Another finding is that models based on decision tree analysis and discriminant analysis showed the highest performance among many bankruptcy forecasting models.

  • PDF

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.