• 제목/요약/키워드: discriminant feature

검색결과 200건 처리시간 0.022초

잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식 (Speech Recognition Using Noise Robust Features and Spectral Subtraction)

  • 신원호;양태영;김원구;윤대희;서영주
    • 한국음향학회지
    • /
    • 제15권5호
    • /
    • pp.38-43
    • /
    • 1996
  • 본 논문에서는 잡음 및 주변 환경에 강인한 것으로 알려져 있는 특징 벡터들을 이용한 인식 성능을 비교하였다. 아울러 스펙트럼 차감법을 적용하여 높은 인식 성능을 얻도록 하였다. 본 논문에서는 환경 변화에 강인한 인식 성능을 얻기 위하여 SMC(Short time Modified Coherence) 분석, 루트(root) 켑스트럼 분석, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) 처리 등을 이용하여 인식 실험을 수행하였다. 실험을 위하여 반연속 HMM을 이용한 단독음 인식 시스템을 구현하였고 전시장 및 컴퓨터실의 잡음을 첨가하여 0, 10 및 20dB의 SNR에 대한 인식 실험을 수행하였다. 실험 결과, LPCC(Linear Prediction Cepstral Coefficient)를 이용한 경우에 비하여 SMC나 루트처리를 이용한 멜 켑스트럼(루트_멜 켑스트럼)을 이용한 경우 10dB의 SNR에서 각각 9.86%, 12.68% 향상된 가장 좋은 인식률을 얻었다. 또한 멜 켑스트럼과 루트_멜 켑스트럼을 스펙트럼 차감법과 결합하여 잡음을 제거한 경우 10dB에서 각각 16.7%, 8.4% 향상된 94.91%, 94.28%의 인식률을 얻을 수 있었다.

  • PDF

특징벡터를 사용한 얼굴 영상 인식 연구 (A Study on Face Image Recognition Using Feature Vectors)

  • 김진숙;강진숙;차의영
    • 한국정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.897-904
    • /
    • 2005
  • 영상 인식은 영상획득이 용이하다는 것과 실생활에서 광범위하게 사용될 수 있다는 것으로 인해 활발하게 연구되고 있는 분야이다. 그러나 얼굴영상은 높은 차원의 영상공간으로 인해 이미지 처리가 쉽지 않다. 본 논문은 얼굴 영상 데이터의 차원을 특징적인 벡터로 표현하고 이러한 특징벡터를 통해 얼굴 영상을 인식하는 방법은 제안한다. 제안되는 알고리즘은 두 부분으로 나뉜다. 첫째로는 칼라 영상을 그레이 영상으로 변환할 때 RGB 세 개의 플레인의 평균이 아닌 세 플레인의 주성분을 사용하는 PCA(Principal Component Analysis)를 적용한다. PCA는 칼라 영상을 그레이 영상으로 변환하는 과정과 인식률을 높이기 위한 영상 대비 개선 과정이 동시에 수행한다. 두 번째로는 PCA와 LDA(Linear Discriminant Analysis) 방식을 하나의 과정으로 통합하는 개선된 통합 LDA 방법이다. 두 과정을 통합함으로서 간결한 알고리즘 표현이 가능하며 분리된 단계에서 있을 수 있는 정보 손실을 방지할 수 있다. 제안된 알고리즘은 잘 제어된 대용량 얼굴 데이터베이스에서 개인을 확인하는 분야에 적용되어 성능을 향상시키고 있음을 보여주었고, 추후에는 실시간 상황에서 특정 개인을 확인하는 분야의 기초 알고리즘으로 적용될 수 있다.

산사태 취약성 분석을 위한 GIS 기반 확률론적 추정 모델과 모수적 모델의 적용 (Application of GIS-based Probabilistic Empirical and Parametric Models for Landslide Susceptibility Analysis)

  • 박노욱;지광훈;;권병두
    • 자원환경지질
    • /
    • 제38권1호
    • /
    • pp.45-55
    • /
    • 2005
  • 산사태 취약성 분석을 위해 적용된 기존 GIS 기반 확률론적 공간 통합 모델은 범주형과 연속형 자료와 같이 서로 다른 형태의 자료의 처리를 위한 이론적 배경과 효율적인 방법론을 제시하지 못하였다. 이 논문에서는 우도비의 틀 안에서 연속형 자료를 직접적으로 사용할 수 있도록 비모수적 경험적 추정 모델과 모수적 예측적 판별 분석 모델을 적용하였다. 그리고 유사율과 예측비율곡선을 계산함으로써 두 모델을 정량적으로 비교하고자 하였다. 제안 모델을 비 교하기 위해 1998년 여름 산사태로 많은 피해를 입은 장흥 지역과 보은 지역을 대상으로 사례연구를 수행하였다. 장 흥 지역에서는 두 모델이 유사한 예측 능력을 나타내었으나, 보은 지역에서는 모수적 예측적 판별 분석 모델이 보다 높은 예측 능력을 나타내었다. 결론적으로 제안한 두 모델은 산사태 취약성 분석을 위한 연속형 자료 표현에 효율적 으로 적용될 수 있으며, 두 모델이 개별적인 연속형 자료 표현의 특성을 가지고 있기 때문에 다른 사례 연구를 통한 검증 작업이 병행되어야 할 것으로 생각된다.

음성인식기 구현을 위한 잡음에 강인한 음성구간 검출기법 (Robust Speech Segmentation Method in Noise Environment for Speech Recognizer)

  • 김창근;박정원;권호민;허강인
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.18-24
    • /
    • 2003
  • 실시간 음성 인식기의 구현에 있어서 선행되어야 할 과제는 신뢰성 있는 음성구간 검출과 적절한 음성특징벡터를 구하는 것이다. 그러나, 주변 잡음이 인가되는 환경에서는 신뢰성 있는 음성구간 검출이 어렵게 되어 적절한 음성특징벡터를 구할 수 없게 되어 최종적으로 인식기의 성능 저하를 초래하게 된다. 이러한 문제점을 보완하기 위하여 본 논문에서는 일반적으로 사용되어지는 단구간 파러 스펙트럼 외에 잡음에 강인한 특성을 가질 수 있도록 하는 새로운 특징 파라메터로써 스펙트럼 밀도비교척도와 선형회귀를 이용한 선형결정함수를 사용하였다. 이러한 두 가지 파라메터를 추가하여 주변 잡음의 크기에 따라 각각의 (파라메터를 적절한 가중치로 조합하여 음성구간 결정을 수행한 다음 DTW를 사용하여 인식실험을 한 결과 주변 잡음이 존재하는 환경에서도 강인한 특성을 가짐을 확인할 수 있었다.

  • PDF

개선된 챔퍼매칭 우도기반 2차원 평면 객체 추적 (2D Planar Object Tracking using Improved Chamfer Matching Likelihood)

  • 오치민;정문호;유범재;이칠우
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.37-46
    • /
    • 2010
  • 본 논문에서는 개선된 챔퍼매칭(Chamfer Matching)으로 2차원 평면 객체 모델을 추적하는 방법을 제시한다. 기존 챔퍼매칭은 배경이 복잡할 경우 객체와 영상간의 유사도를 계산하기 어려운 단점이 있다. 따라서 본 논문에서는 챔퍼매칭을 에지와 코너특징을 사용해 복잡한 배경에서도 유사도를 계산할 수 있도록 개선한다. 개선된 챔퍼매칭은 기하(Geometric) 모델을 추적하는 파티클 필터(Particle Filter)의 우도함수로 사용된다. 기하모델은 2차원 평면 객체를 에지 및 코너 특징점과 포즈로 모델링하며, 색상 변화에 안정적인 객체서술자이다. 파티클 필터는 칼만필터 보다 더 비선형적인 추적 방법이다. 따라서 제안된 방법은 복잡한 환경에서 객체를 추적하기 위해 기하모델 및 파티클 필터, 개선된 챔퍼 매칭을 사용한다. 실험 결과에서는 제안 방법의 강건함을 기존 방법의 비교를 통해 나타낸다.

JointBoost 알고리즘을 이용한 기울어진 얼굴 검출 (Inclined Face Detection using JointBoost algorithm)

  • 정윤호;송영모;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제15권5호
    • /
    • pp.606-614
    • /
    • 2012
  • AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.

BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석 (Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI)

  • 양통;;임창균
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1333-1342
    • /
    • 2018
  • 지금까지 뇌파(Electroencephalography - EEG)는 뇌전증 진단 및 치료를 위한 가장 중요하고 편리한 방법이었다. 그러나 뇌전증 뇌파 신호의 파형 특성은 매우 약하고 비 정지 상태이며 배경 노이즈가 강하기 때문에 식별하기가 어렵다. 이 논문에서는 간질 뇌파의 특징 선택을 통한 차원 감소를 통한 분류 방법의 효과를 분석한다. 우리는 차원 감소를 위해 주 요소 분석, 커널 요소 분석, 선형 판별 분석 방법을 사용하였다. 차원 감소방법의 성능 분석을 위해 Support Vector Machine: SVM), Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR), Random Forest(: RF) 분류 방법들을 사용해 평가하였다. 실험 결과에 따르면, PCA는 SVM, LR 및 K-NN에서 75% 정확도를 나타냈다. KPCA는 SVM과 K-KNN에서 85%의 성능을 보였으며 LDA는 K-NN를 이용했을 때 100 %의 정확도 보여주었다. 따라서 LDA를 이용한 차원 감소가 뇌전증 EEG 신호에 대한 최고의 분류 결과 보여주었다.

필터 뱅크 기반 BCI 시스템을 위한 CSP와 LDA를 이용한 필터 선택 방법 (Filter Selection Method Using CSP and LDA for Filter-bank based BCI Systems)

  • 박근호;이유리;김형남
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.197-206
    • /
    • 2014
  • 운동심상(Motor imagery) 기반의 뇌-컴퓨터 인터페이스(Brain-computer Interface)는 주로 뇌전도(Electroencephalography, EEG)를 이용하여 사용자의 자발적인 운동 의지를 읽는 기술로 최근 주목받고 있다. 이 중에서도 피실험자의 운동 의지를 정확히 해석하기 위해 감각운동 영역(sensorimotor area)의 일부분에서 나타나는 ${\mu}$-대역(8-13Hz)의 전위 감소 현상인 event related desynchronization(ERD)을 분석하는 연구가 많이 진행되고 있다. 하지만 EEG는 공간 해상도가 낮고 사용자에 따라 ERD가 발생하는 주파수 대역이 다소 차이가 있어 추정에 어려움이 있다. 이에 대한 개선 방법의 하나로서 공간 필터를 구현하는 common spatial pattern (CSP)과 필터 뱅크(filter bank)를 결합한 형태인 discriminative filter bank common spatial pattern(DFBCSP)이 제안되었다. 그러나 DFBCSP는 EEG 신호의 평균 전력(power)의 Fisher ratio를 이용하여 사용자에 따른 효과적인 주파수 대역을 포함하는 discriminative filter bank(DFB)를 구성하여 분류 정확도를 향상시켰지만 ERD의 공간 패턴이 나타나는 적절한 필터를 선택하지 않는 경우가 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 EEG 신호의 평균전력 대신 CSP의 특성 벡터를 이용하여 DFB를 구성하는 방법을 제안한다. 기존의 방법과 제안한 방법의 필터 선택 결과와 분류 정확도 분석을 통해 CSP 특성 벡터가 DFB 구성에 더욱 효과적임을 보인다.

Recognizing asymmetric moire patterns for human spinal deformity detection

  • Kim, Hyoung-Seop;Hiroshi UENO;Seiji ISHIKAWA;Yoshinori Otsuka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.568-571
    • /
    • 1997
  • Recently, the number of techniques for analyzing medical images has been increasing in computer vision, employing X-ray CT images, ultrasound images, MR images, moire topographic images, etc. Spinal deformity is a serious problem especially for teenagers and medical doctors inspect moire topographic images of their backs visually for the primary screening. If a subject is normal, the moire image is almost symmetric with respect to the middle line of the subject's back, otherwise it shows asymmetric shape. In this paper, an image analysis technique is described for discriminating suspicious cases from normal in human spinal deformity by recognizing asymmetric moire images of human backs. The principal axes which are sensitive to asymmetry of the moire image are extracted at two parts on a subject's back and their angles are evaluated with respect to the detected middle line of the back. The two angles compose a 2-D feature space and inspected cases are divided into two clusters in the space by a linear discriminant function based on the Mahalanobis distance. Given 120 cases, 60 normal and 60 abnormal, the leave-out method was applied for the recognition and 75% recognition rate was achieved.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • 한국멀티미디어학회논문지
    • /
    • 제13권12호
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.